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Abstract

Natural language is arguably one of the most impressive achievements in evolution. Most human beings can naturally and 
effortlessly learn their first language during the early years of life. While it seems that acquiring a language requires learning 
simple conditional rules, typically reinforced, there are underlying mechanisms that facilitate its emergence. Logical categories or 
equivalence relations form the core of these mechanisms. In a logical category, perceptually unrelated stimuli become equivalent 
in terms of properties such as identity, symmetry, and transitivity after the reinforcement of simple if then conditionals. 
Interestingly, human subjects unable to learn any language also struggle to establish stimulus equivalence after successfully 
learning those simple conditionals. Here, we demonstrate that Large Language Models (LLMs) currently being used to assist 
people in their jobs or, even more significantly, to replace them, can learn simple conditionals but fall short in tests for the 
emergence of equivalence relations.
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Abbreviation

LLMs: Large Language Models.

Introduction

Since the inception of transformers by Vaswani, et al. there 
has been a remarkable advancement in natural language 
processing, culminating in the emergence of multimodal 
Large Language Models. Notable examples include GPT-
4 (2022) and Gemini [1], both widely integrated into 
applications. The rapid adoption of these models as 
computer assistants spans across companies, independent 
professionals, and students at all levels of education, often 
without a discerning evaluation of their capabilities. The 

extent to which we can depend on these systems is influenced 
not only by technological considerations but also by factors 
such as biases introduced through the training corpus [2], 
the abundance of model parameters and hyperparameters, 
and the evolving capacities for reasoning [3] concepts that 
may elude comprehension for the average user.

Large Language Models like GPT-3, GPT-4 and Gemini possess 
the ability to enhance their outputs through a meta-in-context 
learning process [4]. Meta-learning empowers these general 
models to adapt to specific contexts without necessitating 
changes to the model parameters, for example, employing 
low-rank adapters [5]. In essence, the feedback acquired 
during the conversational process contributes to refining 
the model predictions. This fundamental characteristic 
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enables extensive experimentation, drawing parallels with 
studies conducted over the past fifty years in both human 
and primate subjects, shedding light on the foundational 
principles of language learning. Murray Sidman’s research 
on the emergence of equivalent relations among initially 
unrelated stimuli has provided valuable insights into 
establishing a correlation between this phenomenon and 
the capacity to acquire language. Through studies involving 
primates, individuals proficient in language (including 
Sign Language), and those unable to acquire it, Sidman 
demonstrated that only those with language abilities were 
capable of successfully solving the equivalence relations test 
[6-8].
 
In this study, we engaged in meta-training sessions with 
GPT-3, GPT-4, and Gemini, focusing on a conversational task. 
The task involved presenting a sample stimulus followed 
by two comparison stimuli, prompting the model to choose 
one of the comparison stimuli. Over a span of twenty trials, 
the model was systematically trained to grasp implication 
relations, such as A->B and A->C. Positive reinforcement was 
applied for correct responses using the Great! Word, while 
negative reinforcement accompanied wrong responses using 
the Wrong word. Once the model demonstrated proficiency in 
acquiring the implication relations, subsequent experiments 
were conducted to assess the emergence of equivalence 
relations.

Methods

During training and testing the API_KEY for GPT-3.5, GPT-
4 and Gemini was employed in every chat. Chats were 
opened for each training and testing instance and then 
closed. Stimuli were words generated by choosing seven 
capital letters randomly (uniform distribution). Each 
training instance starts with the following sentence: I want 
to teach you a new language! At the beginning, there are 
no predefined connections between words. I’ll present you 
with two options for each word, and you’ll learn through 
feedback. The training program consists of twenty trials. One 
of the sample words from Class A, chosen with probability 
equal to 0.5, was given and the LLMs were asked to choose 
between the other two comparison words taken from Class B 
or Class C with probability equal to 0.5. For example, for the 
following six random words determined at the beginning of 
the experiment:

Class B  Class A  Class C
XAAULNJ ⟸ TKBLQJH ⟹ VUEYXRB

HWLVHQM ⟸ LCBXPEO ⟹ JNSBRWL

The algorithm writes to the LLMm with the following phrase:
For LCBXPEO choose between XAAULNJ or HWLVHQM. 
Answer only one word.

If the LLM response were HWLVHQM the algorithm replies 
Great! In the other case the algorithm replies wrong. After 
twenty training trials, if the LLM answer correctly to all A->B 
and A->C questions, it was tested for symmetry between 
(Class B ⟹ Class A, Class C ⟹ Class A), transitivity ( Class 
C ⟹ Class B, Class B ⟹ Class C) and identity (Class A ⟹ 
Class A, Class B ⟹ Class B and Class C ⟹ Class C) with no 
reinforcement words.

In experiments with English words, they were selected 
according to their distance to some concept, models/
embedding-001 Gemini embeddings database was employed 
with content=word and task type=retrieval_document, as 
long as the Gemini-pro model API.

Results

One hundred independent instances of LLMs were trained 
during twenty trials to acquire reinforced implications between 
word stimuli belonging to class A and those belonging to classes 
B and C. The schematic representation of these simple A->B 
and A->C conditional relationships is presented in Figure 1A 
and Figure 1B (Training). Consistent with human learning 
paradigms, the associations established between these classes 
are arbitrary and devoid of inherent semantic content. The 
trainer retains complete control over the specific associations, 
thereby enabling the implementation of matching-to-sample 
and non-matching-to-sample paradigms. Subsequent to training 
on A->B and A->C implications, the model’s performance was 
assessed via unreinforced tests of identity (A->A), symmetry 
(B->A and C->A), and transitivity (B->C and C->B) relationships 
(Figure 1B, Test). Figure 1C provides a visual representation of 
the equivalence classes established upon successful acquisition 
of these logical categories.

Figure 1: Illustrates the training and testing process in 
equivalence relations.

• To establish two equivalence relations classes through 
training, three sets of perceptually different stimuli are 
introduced: color names, colors, and images.

• The upper part of the figure depicts a training trial, where 
a color name serves as the sample, and two amorphous 
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colors are presented as comparisons. The correct choice, 
reinforced during the trial, is the blue color.

• Upon successfully passing all equivalence tests (identity, 
symmetry, and transitivity), two distinct equivalence 
classes emerge. One features the word BLUE, the blue 
color, and an image of the sky, while the other includes the 
word GREEN, the green color, and an image of the forest.

In order to prevent the influence of pre-learned relations 
encoded in the model hyperparameters or in word 

embeddings semantics, we firstly used seven randomly 
generated letter words as stimuli, as detailed in the Methods 
section obtaining similar results with GPT-3.5, GPT-4 and 
Gemini. The acquisition of simple conditionals was assessed 
across 100 independent model instantiations. A majority of 
models demonstrated successful learning, with success rates 
exceeding 70% in all cases (73% for GPT-3.5, 74% for GPT-
4, and 77% for Gemini). Learning acquisition trajectory for 
Gemini is presented in Figure 2A.

Figure 2: A. Meta-learning of A->B and A->C rewarded implications. B. Equivalence relation tests over those sessions where 
the model learnt A->B and A->C implications.

Subsequently, we evaluated these models in equivalence 
relations. While the identity relation naturally emerged 
during the tests, the degree of symmetry observed was 
notably lower compared to human subjects, beyond the fact 
that it was higher than chance (p<0.01). Transitivity from 
Class B to Class C or vice versa did not attain significant levels 
of accuracy.

We speculate on the language training’s potential to 
influence the relationships between words and their context. 
English collocations serve as a compelling example of this 
phenomenon, as certain words exhibit stronger tendencies 
to collocate with others. For instance, the collocation 
‘heavy rainfall’ and ‘blue sky’ highlights how certain word 
combinations demonstrate a natural affinity in English. 
Applying the same training procedure, we analyzed the 
number of models capable of meta-learning correct and 
incorrect collocations. We used a set of correct English 
collocations, including ‘heavy rainfall,’ ‘heavy traffic,’ 
‘strong winds,’ and ‘strong smell,’ alongside their incorrect 
counterparts, such as ‘heavy winds,’ ‘heavy smell,’ ‘strong 
rainfall,’ and ‘strong traffic,’ to train 100 independent models 

for each case.

Due to the fact that all LLMs tested behave in a similar way, 
from here we used Gemini, which provides us a free number 
of tokens per minute. Out of the 100 experiments conducted 
with correct collocation stimuli, 73% of the models (from 
here and the we used Gemini API) successfully learned all 
simple conditionals from Class A to Class B and Class C. In 
the equivalence relation tests, all models demonstrated 
proficiency, achieving 100% (p<0.0001) accuracy in both 
identity and symmetry tests. However, none of these models 
exhibited the capability to solve the transitivity test (p=0.97), 
essentially choosing their responses by chance. In the case of 
incorrect collocations, none of the models were able to learn 
the conditionals from Class A to both Class B and Class C. This 
indicates the robust conditioning that the context imposes 
on each word in the corpus.

To investigate the impact of semantic distance on the 
emergence of equivalence relations, we selected twenty 
words from three categories: Animals, Devices, and Learning. 
Figure 3 visualizes these words in a two-dimensional space, 
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reduced from 768 dimensions using Principal Component 
Analysis (PCA). 

Figure 3: PCA showed that embeddings for Animals, 
Devices, and Learning clustered within their respective 
categories.

In contrast to training with random words, using two 
randomly chosen words per class significantly impaired 
learning, with only 48% of models acquiring the A->B and 
A->C implications. Despite this lower success rate, we found 
that closer embeddings within class A (cosine distance) 
significantly increased the likelihood of observing symmetry 
(p=0.00325) in the models that did learn the initial 
associations.

Employing the aforementioned three classes, we generated 
a word dataset characterized by the presence of embedding 
clusters representing both short and long inter-cluster 
distances within each class. A subsequent replication 
involving one hundred model instantiations confirmed 
the positive correlation between proximity of A-class 
embeddings and the emergence of symmetry, irrespective of 
the inter-embedding distances within classes B and C. Figure 
4 presents a graphical representation of the inter-embedding 
distances between classes A and B. Instances exhibiting the 
emergence of symmetry are plotted in black.

Figure 4: Graphical representation of the relationship between intra-class embedding distances and the emergence of 
symmetry. Instances exhibiting symmetry following reinforced conditioning are indicated by black markers. Quadrants are 
defined based on the sample median for each respective axis.
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Thus, the closer the word embeddings in class A, the higher 
the probability of B->A symmetry emergence (0.92 vs 0.69, 
p < 0.01). 

Among the models that passed the symmetry test (B->A or 
C->A), 58% also exhibited transitivity (B->C or C->B). We 
then explore how B->A and C->A symmetry impact on B->C 
and C->B transitivity. We found that 85% of the models where 
symmetry emerges were able to succeed in transitivity tests, 
showing that the emergence of symmetry from B->A (C->A) 
is necessary and almost sufficient to assure transitivity from 
B->C (C->B).

Discussion

Large Language Models (LLMs) have rapidly permeated 
nearly all disciplines, transforming established work 
practices. LLMs automate routine tasks, including guiding 
customers through menus, quickly summarizing and 
classifying text [9], and providing an additional layer of 
quality control in medical image processing among others 
[10]. However, while the accuracy of LLMs predictions is 
estimated in base of the training corpus, their performance 
in real situations, i.e. in the production stage, can only be 
checked by users who may not be experts in the matter. Here, 
we investigated the language-learning capabilities of LLMs 
by adapting established psychological testing paradigms 
typically employed with human participants. Specifically, 
we examined performance on symmetry tests, a necessary 
prerequisite for inferring B->A relationships given prior 
learning of A->B associations. Symmetry constitutes a 
necessary condition for the development of equivalence 
relations. The accurate execution of B->C (and C->B) tests is 
contingent upon the prior establishment of the symmetric 
relationship B->A (or C->A) and the subsequent retrieval and 
application of a previously learned rule, A->C (or A->B) [6].

Our findings reveal a critical limitation in state-of-the-art 
LLMs (ChatGPT 3.5, ChatGPT 4, and Gemini): they cannot 
learn equivalence relations between random six-character 
uppercase words, despite their ability to learn A->B and 
A->C implications. We also find that the semantic distance 
between embeddings of English words in the A class plays 
a crucial role in B->A and C->A symmetry test performance. 
This contrasts sharply with human language acquisition, 
where equivalence relations often develop alongside 
language skills, suggesting a fundamental difference in how 
LLMs and humans process language.

Our findings could have implications for the development 
of AI-driven conversational bots. In therapeutic contexts, 
understanding nuanced relationships between concepts 
and emotions is crucial. For a patient who expresses feeling 
“anxious” and “overwhelmed” a human therapist can readily 

understand that these two states might be related, perhaps 
even equivalent in some contexts, and can explore this 
connection with the patient. Our results suggest that current 
LLMs may struggle with such relational understanding. They 
might process the words “anxious” and “overwhelmed” as 
separate entities rather than recognizing the underlying 
connection. Whether the emergence of equivalence relations 
among previously unrelated stimuli following reinforced 
training is crucial for the effectiveness of Large Language 
Models (LLMs) remains an open question. However, LLMs 
may offer a valuable starting point for understanding how 
language naturally arises in humans. Moreover, biologically 
plausible models of language, where equivalence relations 
emerge naturally after reinforced training of A->B and A->C 
associations [11,12], may offer insights for enhancing LLMs.

From an operant conditioning perspective, the failure of LLMs 
to form equivalence relations could be interpreted as some 
problem in the reinforcement history. While LLMs are trained 
on vast datasets, the training regimen could not adequately 
reinforce the relational aspects of language, focusing instead 
on individual word associations or statistical regularities. 
The LLMs might be learning what words typically appear 
together, but not the underlying relationships between 
them. This contrasts with human learning, where even 
simple associative learning (A->B, A->C) can lead to the 
spontaneous emergence of derived relational responding, 
like symmetry (B->A, C->A) and equivalence (B->C, C->B), 
given the appropriate contextual cues.

The present study does not directly address the specific 
mechanisms underlying the observed deficit in equivalence 
relation acquisition in LLMs. While factors such as attentional 
mechanisms, masking procedures during training and low 
rank adaptation may play a role, the computational and 
environmental costs associated with de novo LLM training 
render this line of inquiry infeasible at this juncture. 
However, the methodology presented herein offers a valuable 
“black box” paradigm for the empirical investigation of 
these complex systems, analogous to Skinner’s behavioral 
approach in animal psychology [13].
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