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Introduction

Anaesthesiology is well-positioned to benefit from advances 
in artificial intelligence (AI) as it touches on multiple elements 
of clinical care, including perioperative and intensive care, 
pain management, and drug delivery. Therefore integration 
of AI and its technological advancement will significantly 
impact the field of anaesthesia, and enhance patient care, 
safety, and efficiency (Figures 1 & 2). 

Before dwelling on applications of AI, a diagrammatic 
representation of artificial intelligence (AI), Machine 
learning (ML), and Deep learning (DL) is depicted in figure 1 
to understand the framework.

Figure 1: Depicts A Simple Representation of the Relationship between AI, ML, and DL.
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Here are several ways in which AI is influencing anaesthesia:

 Figure 2: Info Graphic of Potential Modalities for AI-Based Applications in Anaesthesia.

Predictive Analytics
AI-powered predictive analytics can anticipate complications 
during anaesthesia administration, one such aspect is 
difficult airway prediction. Using a convolutional neural 
network (CNN) which is a subdomain of deep learning 
(DL), AI is explored to integrate subjective factors like facial 
appearance, speech features, habitus, and other poorly 
known features to predict the difficult airway [1].

By analysing patient data in real-time, machine learning 
(ML) algorithms can accurately predict the adverse 
outcomes following complex surgeries using the optimal 
classification tree (OCT) methodology [2]. Artificial neural 
network (ANN) have been tested to predict the return 
of consciousness following general anaesthesia (GA) [3], 
recovery of neuromuscular blockade [4], and prediction of 
hypotensive episodes following spinal anaesthesia [5]. This 
will prompt the healthcare providers to potential issues 
before they escalate, allowing for proactive intervention and 
better patient management.

Automated Monitoring & Decision Support Systems 
(DSS)
Perioperative monitoring is a tedious task, and alarm fatigue 
experienced by the anaesthesiologist can be a serious safety 
concern for the patients. AI-driven monitoring systems 
continuously assess patient vital signs during surgery, 
providing early detection of adverse events, and also reducing 
the lower false alarms thereby reducing operator fatigue.

Hypotension following GA is not uncommon and prolonged 
hypotension may lead to undesirable consequences. The 

Acumen HPI algorithm™ uses sophisticated machine learning 
to map various parameters to predict the hypotensive event 
well before and also guides as a decision-supportive system 
to use fluids, inotropes, or vasopressors in the appropriate 
clinical context [6]. 

Automated Intervention
The most intelligent and efficient use of automated 
monitoring is combining the various systems monitoring 
along with therapy to correct it to the pre-set value, by using 
a closed-loop feedback system. AI-controlled drug delivery 
systems precisely administer anaesthesia drugs based on 
patient response and physiological feedback. These closed-
loop systems continuously monitor patient parameters and 
adjust drug dosages in real time, optimizing anaesthesia 
depth while minimizing the risk of overdose or underdose.

Closed Loop Anaesthesia Design Systems(CLADS): 
Researchers have been interested in controlling the depth of 
anaesthesia since the introduction of the Bickford apparatus 
in the 1950s, and later Mcsleepy to various closed-loop 
anaesthesia design systems(CLADS). When complexity 
arises these algorithms cannot match the humanistic skill 
of decision making poses a significant challenge in the 
real world since, these early systems use a top-down rule-
based algorithm. Thanks to cognitive computing which uses 
a bottom-up design to train from the inputs and perform 
the task and desired responses, unlike a strict rule-based 
algorithm [7].

This advanced AI opens the possibility of a closed-loop system 
not only for the precise depth of anaesthesia control but 
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also for blood glucose control [8], and fluid-administration 
system based on dynamic predictors of fluid responsiveness 
[9]. 

Automation in Airway: Although automation is changing 
the landscape of perioperative medicine anaesthesiologists, 
were in feigned peace that AI could not take away the prime 
skill of ventilation and Intubation until recently. The fusion 
of robotic technology and advanced AI put forward the 
development of the basic Kepler Intubation system into 
an advanced Robotic Endoscope Automated Via Laryngeal 
Imaging for Tracheal Intubation (REALITI) system which 
made the thought turnaround [10]. 

AI is also explored in Ultrasound and Echocardiography by 
Shaikh F, et al. [11] assisting the sonographer with completely 
automated measurements may improve the accuracy, and 
inter-observer variability, and also decrease the workload 
of the health care provider. Extending these automated 
technologies to remote settings where trained cardiologists 
in short benefit the rural people. 

Postoperative Care
AI algorithms can analyse postoperative data to predict 
patient recovery trajectories and identify individuals at 
risk of complications such as pain, respiratory depression 
or circulatory failure. This enables healthcare providers 
to implement tailored postoperative care plans and 
interventions, ensuring smoother recovery and improved 
patient satisfaction. One such exploitation of AI is automated 
weaning using a fuzzy logic algorithm called Evita Weaning 
System (EWS) [12]. This EWS has made it feasible to remotely 
control the ventilator, thus weaning the patients from the 
controlled mode to assisted spontaneous breathing flawlessly. 

Simulation and Training
The postgraduate training has shifted from the traditional 
method of a behaviouristic model to the constructive 
model, which adapts the learner-centric approach. The 
soul domain of competency-based medical education is 
acquiring procedural skills, and simulation is the key novel 
method for it. AI-powered simulation platforms like virtual 
reality (VR) and augmented reality (AR) offer immersive 
training environments for anaesthesia providers [13]. These 
simulations accurately replicate surgical scenarios, allowing 
anaesthesiologists to practice various techniques, refine 
their skills, and make critical decisions in a risk-free setting. 
This enhances competency and preparedness for real-life 
situations.

Research and Development
AI facilitates research in anaesthesia by analysing large 
datasets, identifying novel drug targets, and predicting 

treatment outcomes. Machine learning algorithms can 
uncover hidden patterns in medical data, leading to 
advancements in anaesthesia techniques, pharmacology, and 
perioperative care.

Conclusion

Overall, the integration of AI technologies in anaesthesia 
holds great promise for improving patient safety, optimizing 
anaesthesia management, and advancing the field through 
data-driven insights and innovation. However, continued 
research, validation, and collaboration between clinicians, 
researchers, and technology developers are essential to 
realizing the full potential of AI in anaesthesia practice.
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