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Introduction 

The functional role of blood elements in human body is 
very complex which can only be predicted through proper 
probabilistic modeling. The report focuses how a 
probabilistic model can interpret the internal complex 
functional mechanism of a blood element on cardiac 
factors (or parameters). The report considers four blood 
elements such as hemoglobin concentration (HGC), red 
cell index (RCI), hematocrit (HCT) and plasma volume 
index (PVI), and seven cardiac factors such as systolic 
blood pressure (SBP), diastolic BP (DBP), cardiac index 
(CI), heart rate (HR), mean arterial pressure (MAP), mean 
central venous pressure (MCVP), shock type (Shock). The 
functional role of these four blood elements on seven 
cardiac factors are focused in the report through 
probabilistic modeling based on a real data set of 113 
shock patients including 20 characters [1], the report 
seeks the following queries.  

a. How do we identify the relationship between a blood 
element and any cardiac factor? 

b. Does any blood element affect on any cardiac factor? 
c. What is the association of a blood element with any 

cardiac factor? 
d. What will happen on the cardiac factor if the blood 

element level is high or low? 
e. What are the explanatory variables of the blood 

element? 
f. How do we decrease or increase the blood element 

level?  
 
The data description and patient population is given in [1]. 
These are not restated herein. The considered study 
characters of the data set are: 
a. Height, 
b. Age, 
c. Sex (male=0, female = 1), 
d. Systolic blood pressure (SBP), 
e. Diastolic BP (DBP), 
f. Shock type (Shock) (non-shock=1, hypovolemic=2, 

cardiogenic, or bacterial, or neurogenic or other=3), 
g. Survival status (Survive) (survived=1, death=2), 
h. Hematocrit (HCT), 
i. Heart rate (HR), 
j. Hemoglobin concentration (HGC), 
k. Cardiac index (CI), 
l. Plasma volume index (PVI), 
m. Appearance time (AT), 
n. Mean arterial pressure (MAP), 
o. Urinary output (UO), 
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p. Mean central venous pressure (MCVP), 
q. Mean circulation time (MCT), 
r. Body surface index (BSI), 
s. Red cell index (RCI), 
t. Card record sequence (initial=1, final =2) (CRS). 
 
The given data set is a multivariate data, and the above 
study can be conducted in two ways. One way is the 
modeling of any blood element with the remaining other 
factors & variables. The other way is the modeling of any 
cardiac factor with the remaining other factors & 
variables. For any random study variable (here any blood 
element or cardiac factor) its mean and variance (if non-
constant) may be explained by many explanatory 
variables. Note that all the four considered blood 
elements are heteroscedastic. Generally, physiological 
variables (or characters) are always heteroscedastic. 
Naturally, for heteroscedastic variable, mean and variance 
are to be modeled by joint generalized linear models 
(JGLMs) with Log-normal and Gamma distributions [2-5]. 
The report considers only the modeling of four blood 
elements with the remaining other cardiac factors & 
variables. Based on the probabilistic models of the four 
blood elements, the associations of these blood elements 
with the cardiac factors are focused in the report.  
 
Detailed JGLMs analyses of plasma volume index (PVI) 
and red cell index (RCI) are given in [6]. From table 2 in 
Das, et al. [6], the probabilistic model of PVI can be 
written as follow.  
Gamma fitted PVI mean ( ̂ ) model [7] is ̂ = exp. 

(4.4400+0.0066 Height–0.1944 Sex–0.1122 Survive - 
0.0785 Shock2-0.0033 Shock3 -0.0033 DBP+0.0117 
MCVP–0.7273 BSI +0.0452 CI–0.0083 HCT+0.0520 CRS), 

and the Gamma fitted PVI variance (
2̂ model is 

2̂ = exp. 

(5.0798-0.0194 Age -0.0340 Height -0.6254 Sex -0.2895 
CI-0.0019 UO-0.0209 HCT). 
 
From the above mean & variance models of PVI, the 
following associations of PVI with the cardiac factors can 
be concluded. 
a. Mean PVI is inversely associated with DBP (P<0.0001), 

interpreting that PVI rises as DBP decreases.  
b. Mean PVI is directly associated with MCVP (P<0.0001), 

implying that PVI rises as MCVP increases.  
c. Mean PVI is directly associated with CI (P<0.0001), 

indicating that PVI rises as CI rises. 
d. Mean PVI is inversely associated with Shock at level 2 

(P=0.0103), interpreting that as PVI increases, the 
incidence of shock will be decreased at level 1 (i.e., for 
non-shock patients) than at level 2.  

e. Variance of PVI is inversely associated with CI 
(P=0.0003), concluding that PVI variance rises as CI 
decreases.  

 
These above associations of PVI with the cardiac factors 
are summarized in Table 1.  
 
From the Table 3 in Das, et al. [6], the probabilistic model 
of (Z=Log RCI) can be written as follow.  

Log-normal fitted RCI mean ( Ẑ ) model Table 2 in Das & 

Lee [7] is Ẑ = 2.0914+0.0011 Age – 0.0689 Shock2-0.0156 
Shock3 -0.1877 BSI+0.0066 PVI+0.0325 HGC+0.0148 

HCT, and the Log-normal fitted RCI variance (
2̂ ) model 

is 
2̂ = exp. (3.7240–0.0282 Height - 0.1284 Shock2 + 

0.5488 Shock3 + 0.0051 SBP - 0.1796 CI - 0.0014 UO -
0.0140 PVI – 0.0398 HCT).  
 
From the above mean & variance models of (Z=Log RCI), 
the following associations of RCI with the cardiac factors 
can be concluded.  
a. Mean RCI is inversely associated with Shock at level 2 

(P=0.0522), implying that that as RCI increases, the 
incidence of shock will be decreased at level 1 (i.e., for 
non-shock patients) than at level 2.  

b. Variance of RCI is inversely associated with CI 
(P=0.0397), concluding that RCI variance rises as CI 
decreases. 

c.  Variance of RCI is partially directly associated with 
Shock at level 3 (P=0.0783), implying that RCI variance 
increases at higher Shock level 3 than at levels 1 & 2.  

d. Variance of RCI is partially directly associated with SBP 
(P=0.1758), interpreting that RCI variance rises as SBP 
increases.  

 
These above associations of RCI with the cardiac factors 
are summarized in Table 1. 
 
Detailed JGLMs analysis of Hemoglobin concentration 
(HGC) is given in Das & Lee [7]. From Table 2 in Das & Lee 
[7] the probabilistic model of (Z=LogHGC) can be written 
as follow.  

Log-normal fitted HGC mean ( Ẑ ) model (Table 2) is 

Ẑ = 1.5961-0.0178 Survive–0.0019 MCVP +0.0015 
AT+0.0240 HCT,  

and the Log-normal fitted HGC variance (
2̂ ) model is  

2̂ = exp. (-0.8350–0.5595 Sex+0.3716 Shock2-0.3894 

Shock3-0.0123 SBP+0.0074 HR +0.0420 MCVP–0.1374 CI 
+0.0018 UO–0.0934 HCT).  
 
From the above mean & variance models of (Z=Log HGC), 
the following associations of HGC with the cardiac factors 
can be concluded. 
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i. Mean HGC is partially inversely associated with MCVP 
(P=0.0924), indicating that HGC increases, as MCVP 
decreases. 

ii. Variance of HGC is inversely associated with SBP 
(P=0.0001), concluding that HGC variance increases, 
as SBP decreases. 

iii. Variance of HGC is partially directly associated with 
HR (P=0.0768), implying that HGC variance increases, 
as HR rises.  

iv. Variance of HGC is partially inversely associated with 
CI (P=0.0678), interpreting that HGC variance 
increases, as CI decreases.  

v. Variance of HGC is partially directly associated with 
MCVP (P=0.0679), indicating that HGC variance 
increases, as MCVP rises.  

 
These above associations of HGC with the cardiac factors 
are summarized in Table 1.  
 
Detailed JGLMs analysis of Hematocrit (HCT) is given in 
Das & Lee [8]. From Table 1 in Das & Lee [8], the 
probabilistic model of HCT can be written as follow.  

Gamma fitted HCT mean ( ̂ ) model (Table 2) is 

̂ = exp. (2.6877 - 0.0554 Shock2 - 0.0348 Shock3 - 

0.0001 UO - 0.0014 PVI + 0.0811 HGC), and the Gamma 

fitted HCT variance (
2̂ ) model is  

2̂ = exp. (- 5.525 + 0.922 Survive - 0.005 SBP - 0.006 HR + 

0.119CI + 0.141 HGC).  
 
From the above mean & variance models of HCT, the 
following associations of HCT with the cardiac factors can 
be concluded. 
i. Mean HCT is inversely associated with Shock at level 

2 (P=0.0014), implying that as HCT rises, incidence of 
shock decreases at level 1 (i.e., for non-shock 
patients) than level 2.  

ii. Mean HCT is inversely associated with Shock at level 
3 (P=0.0281), concluding that as HCT rises, incidence 
of shock decreases at levels (1 & 2) than level 3.  

iii. Variance of HCT is partially inversely associated with 
SBP (P=0.0947), interpreting that as SBP rises, HCT 
variance decreases. 

iv. Variance of HCT is partially directly associated with 
CI (P=0.1049), implying that as CI increases, HCT 
variance increases.  

v. Variance of HCT is partially inversely associated with 
HR (P=0.0718), concluding that as HR rises, HCT 
variance decreases. 

 
These above associations of HCT with the cardiac factors 
are summarized in Table 1. 
 

Model Variable 
Associated 

with 
Associated 

Type 
P-value 

Mean HGC MCVP -ve 0.0924 

 
Variance 

HGC HR +ve 0.0768 
HGC SBP -ve 0.0001 
HGC MCVP +ve 0.0679 
HGC CI -ve 0.0678 

 
Mean 

PVI Shock2 -ve 0.0103 
PVI DBP -ve <0.0001 
PVI MCVP +ve <0.0001 
PVI CI +ve <0.0001 

Variance PVI CI -ve 0.0003 

Mean RCI Shock2 -ve 0.0522 

Variance 
RCI Shock3 +ve 0.0783 
RCI CI -ve 0.0397 
RCI SBP +ve 0.1758 

Mean 
HCT Shock2 -ve 0.0014 
HCT Shock3 -ve 0.0281 

 
Variance 

HCT SBP -ve 0.0947 
HCT HR -ve 0.0718 
HCT CI +ve 0.1049 

Table 1: Association of cardiac factors with blood 
elements HGC, PVI, RCI & HCT level. 
 
The report has shown the effects of four blood elements 
(HGC, PVI, RCI & HCT) on seven cardiac factors (DBP, SBP, 
CI, MCVP, HR, MAP & Shock type). From Table 1, it is 
observed that mean PVI, RCI & HCT levels are associated 
with the incidence of shock. If their levels are high, the 
incidence of shock decreases for non-shock patients than 
shock patients. Overall from the report, it is implied that 
all the four blood elements level should be little high, but 
very low level may invite many cardiac problems. Medical 
practitioners & every cardiac patient should care on all 
the four blood elements level.  
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