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Abstract 

In this mini-review the available evidence for a favorable effect of antidiabetic drugs in Alzheimer’s disease (AD) is 
discussed. Beneficial effects are mostly seen in animal studies. Clinical studies are small, have many methodological flaws 
and show inconsistent results Oxidative stress inflammation, insulin resistance, advanced glycation end-products and 
obesity all play a pivotal role. However research relies heavily on the amyloid hypothesis. It is obvious that antidiabetic 
drugs are not the new cure after the failure of all amyloid-beta trials in the last decades. Dementia risks seem similar for 
type 2 and type1 diabetes but limited research has been performed in type 1 diabetes. Hypoglycemic episodes are not the 
culprit indementia and diabetes. Further research of Alzheimer’s in type 1 DM is hampered by the low prevalence and the 
mixed nature of dementia in DM type 1. 
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Introduction 

As the population ages, dementia grows as a public health 
problem. In the absence of a cure primary prevention will 
have the largest effect on the reduction of dementia 
occurrence [1-10]. Diabetes mellitus is an established risk 

factor for dementia. Patients with diabetes have an 
increased risk for any dementia [2-5]. The exact 
mechanism of cognitive impairment in diabetic patient 
remains unknown. The main contributors to diabetes-
associated cognitive decline include hyperglycemia 
decreased insulin secretion, obesity increased oxidative 
stress and inflammation. In addition patients with 
diabetes often have other co-morbidities such as high 
blood pressure and cardiovascular disease that may 
contribute to the development of dementia [4-8]. 
 
Several studies have examined the association of different 
antidiabetic medications and cognitive function as well in 
Alzheimer as in Parkinson’s disease [9-11]. Central 
nervous insulin resistance in combination with 
inflammation and oxidative stress seem to contribute to 
the shared pathophysiological link. In this mini-review the 

mailto:naafs.healthconsultancy@gmail.com


Clinical Journal of Diabetes Care and Control 

 

https://chembiopublishers.com/CJDCC/  https://chembiopublishers.com/submit-manuscript.php 
 

2
 

evidence on the mechanisms of action of antidiabetic 
drugs and their potential uses in Alzheimer’s disease (AD) 
is discussed. The beneficial effects of antidiabetic drugs on 
cognition in Parkinson’ disease is beyond the scope of this 
mini-review [10]. 
 

Diabetes and Alzheimer’s Disease (AD) 

Insulin signaling 

Hyperinsulinemia and insulin resistance are two of the 
hallmarks of type2 DM, which have been shown to be 
important risk factors for elderly cognitive decline [12]. 
Indeed while an acute administration of insulin may 
improve memory domains dysfunctions in delayed 
memory processes can result from chronic administration 
[4,13]. Insulin signaling induces the brain to take up 
glucose and to produce insulin- degrading enzyme (IDE) 
in order to reduce its level. IDE is involved in both insulin 
and amyloid-beta (Abeta) degradation leading to amyloid 
accumulation [14]. Moreover in diabetes alteration of 
insulin signaling determines less IDE production resulting 
in reduction of Abeta (Amyloid-beta) degradation. This 
process definitely leads to abnormal beta accumulation. 
Therefore increasing insulin signaling in the brain might 
reduce Abeta accumulation in the brain. Insulin has also 
been reported to enhance Abeta clearance from the brain 
[15]. Furthermore soluble Abeta oligomers known as 
amyloid beta-derived diffusible ligands (ADDLs), 
contribute to insulin resistance in AD by modifying 
synapse confirmation. This altered shape confirmation is 
responsible for reduced affinity of synaptic insulin 
receptor for its ligand [13]. 
 
It is not surprising that a recent hypothesis suggested AD 
might be a neuro-endocrine disorder a so called “type 3 
diabetes” [16,17]. Impaired insulin signaling has been 
critically involved in the development of both type2 DM 
and AD. However other abnormalities common to both 
pathologies include glucose dysmetabolism mitochondrial 
dysfunction, oxidative stress or deposition of 
amyloidogenic proteins [18]. 
 

Advanced glycation end products (AGEs) 

Under physiological conditions glucose metabolism is 
critical for proper brain function and its neuronal 
connections. As neurons are unable to store and 
synthesize glucose, this is transported across the blood-
brain barrier (BBB) via glucose transporters (GLUTs) with 
GLUT-1, GLUT-3 and GLUT-4 constituting the most 
abundant isoforms [19]. However under chronic glucose 
dysmetabolism as in type2 DM, brain damaging effects 
may arise with the formation and accumulation of 
advanced glycation end-products (AGEs) constituting one 
of the most deleterious ones [20]. AGEs are formed by a 

sequence of events originally identified as the end 
products of the Maillard reaction during which reducing 
sugars (e.g. glucose and fructose) react with amino groups 
from proteins that become auto-oxidized and form cross-
linked complexes and unstable compounds [17]. Besides 
their massive formation in diabetic patients AGEs were 
also found in retinal vessels peripheral nerves, kidneys 
and CNS of aged patients without DM [21]. Moreover the 
extent of Abeta peptide glycation by AGEs has been 
correlated with its aggregation into senile plaques as well 
as with tau protein hyperphosphorylation and the 
subsequent formation of neurofibrillary tangles (NFTs) 
ultimately leading to the abnormal accumulation of both 
AD neuropathological hallmarks [17,18]. 
 
AGEs may also react with free radicals promoting 
oxidative damage and further cellular injury [22]. 
Therefore as type2 DM exacerbates the production of 
such deleterious molecules it is not surprising that AGEs 
production and eventually the vicious cycle of oxidative 
stress may create another putative biochemical link 
between type 2 DM and increased risk of AD. 
 

Oxidative stress 

Regarding oxidative stress mitochondria are one of the 
major sources and targets of reactive oxygen species 
(ROS) and have been increasingly demonstrated to have a 
pivotal role in AD and diabetes pathogenesis [23]. They 
are primarily responsible for several crucial cellular 
processes being also the main coordinators of energy 
metabolism by generating over 90% of cellular ATP [18]. 
Conversely given the mitochondria’s high susceptibility to 
oxidative stress-mediated injury together with the 
neurons extreme sensitivity to alterations in their 
mitochondrial pool it is acceptable that the mitochondrial 
functional impairment can be correlated with AD and 
diabetes [24,25]. Over production of ROS and the general 
increase in oxidative stress are characteristic of DM. 
Oxidized protein accumulation has also been 
demonstrated in the hippocampus frontal and temporal 
lobes of mild cognitive impairment patients, suggesting an 
early impact of oxidative damage in AD development [24]. 
 

Inflammation 

Both type2 DM and AD are largely related to 
inflammatory processes. Insulin resistance is associated 
with elevated levels of pro-inflammatory cytokines such 
as C-reactive protein tumor necrosis factor -alpha (TNF-
alpha) interleukins (IL-1) and IL-6 [26]. All these 
cytokines are considered an indirect sign of the 
immunological dysfunction that leads to insulin resistance 
[27]. Likewise IL-6 and C-reactive protein are connected 
to Abeta plaque deposition and progression and on the 
other side a reduced AD incidence has been reported in 
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patients under chronic non-steroidal anti-inflammatory 
therapy [28]. Another relevant aspect is represented by 
the pro-inflammatory role of astrocytes and microglia 
surrounding Abeta plaques that are responsible of 
neuronal irreversible damage as a consequence of 
complement activation [29]. Interestingly insulin seems to 
have anti-inflammatory effects directly suppressing pro-
inflammatory cytokines and inducing anti-inflammatory 
mediators as demonstrated in both preclinical and clinical 
studies [30]. 
 

Central obesity 

Central obesity may result in the metabolic syndrome a 
well known risk factor for the development of insulin 
resistance. The role of obesity in AD has been explored in 
many studies and although the underlying mechanisms of 
this intervention are not yet known AD risk is correlated 
with insulin resistance, oxidative stress, AGEs and 
hyperglycemia [31]. Epidemiological data suggest that 
insulin resistance is associated with increased risk of 
cognitive impairment [32]. PET studies have 
demonstrated that greater insulin resistance is associated 
with an AD-like pattern of reduced cerebral glucose 
metabolism [33]. Thus it is not surprising that insulin 
could be an effective treatment for AD by increasing 
neuronal glucose uptake and cellular ATP levels [34]. 
 

Antidiabetic Drugs and Alzheimer’s Disease 
(AD) 

Insulin 

Insulin resistance plays a crucial role in the development 
and progression of AD [35,36]. Several landmark studies 
have revealed reduced brain insulin receptor sensitivity 
and insulin expression in post-mortem AD [37-39]. In 
addition a recent meta-analysis of longitudinal population 
studies (n=1.746.777) revealed that the risk of AD is some 
50% higher in diabetics as compared to the general 
population [40]. Extensive research has been performed 
to the specific pathways underlying this connection [41-
44]. So there is enough indirect evidence to support 
insulin resistance as a primary feature of AD. 
 
Animal studies have shown that insulin can be transferred 
along olfactory and trigeminal pathways by the intranasal 
route without compromising its biological properties [45-
48]. For that reason intranasal insulin has been mostly 
studied in cognition research. The effects of acute and 
long-term administration of intranasal insulin on 
cognition were studied in young healthy adults. A single 
dose of nasal insulin was already sufficient to improve 
cognitive performance [49]. Novak et al. [50] showed that 
a single dose of intranasal insulin improved visiospatial 

memory and verbal fluency functions. If intranasal insulin 
influences tau metabolism and Abeta peptides turnover in 
healthy individuals is not known. 
 
Studies on the plasma biomarker A beta42 are conflicting 
[51,52]. Therefore caution is needed to conclude that 
reduced plasma concentrations of Abeta 42 after 
intranasal insulin administration provide evidence for the 
putative neuroprotective effects of nasal insulin. Clinical 
trials for intranasal insulin in patients with amnestic MCI 
(mild cognitive impairment) and AD mostly show that 
both acute and chronic administration of various insulin 
formulations improve several aspects of cognition as 
verbal memory, memory savings and selective attention. 
There are unexplained APOE-related treatment 
differences in these trials as well as for results regarding 
AD biomarkers [53-59]. 
 
Nevertheless these studies indicate that AD is hallmarked 
by impaired brain insulin signaling. They also show that 
intranasal insulin reaches physiological concentrations in 
the brain. Intranasal insulin improves AD 
symptomatology but gender, genotype and formulation 
modify patient response. However most studies are small 
with less than 50 participants. 
 

Metformin 

The evidence for its use in AD is controversial. Preclinical 
data suggest that orally administered Metformin rapidly 
crosses the BBB and accumulates in different CNS regions 
[60]. In vitro studies showed that Metformin can 
resensitize insulin signaling and prevent the molecular 
and pathological changes observed in AD neurons [61]. 
Metformin reduced tau phosporylation in tau transgenic 
mice which is also a hallmark of AD [62]. The exact 
mechanisms of action of Metformin are not fully 
understood. It is also unsure what levels of Metformin are 
needed and in which brain region. Furthermore the 
bioavailability is poor (40-60%) and therefore pro-drug 
approaches have been tried to improve its oral absorption 
[63-65]. 
 
Metformin has been associated with reduced rates of 
dementia [66,67]. Metformin is also known as a caloric 
restriction mimetic (CRM) as its effect on AMPK 
(adenosinemono phosphate-kinase), which reduces 
gluconeogenesis in the live rafter activation, is similar to 
that produced by caloric restriction. Both caloric 
restriction and Metformin have been found to slow the 
aging process in animals and extend life span [68-70]. In 
addition caloric restriction has been shown to improve 
memory in older people [71]. Two clinical trials (MILES 
NCT02432287 and TAME are underway to investigate the 
effect of Metformin on aging and cognition in humans. 
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They should show if Metformin is beneficial as an 
effective prophylactic or as an early intervention for AD in 
older people who do not have diabetes. 
 
However some evidence suggests that metformin can be 
detrimental to the cognitive health of older people with 
diabetes with one study finding an increased rate of AD 
and another finding lower cognitive function [72,73]. The 
study that identified lower cognitive function suggested 
that this could be due to vitamin B12 deficiency induced 
by Metformin [74,75]. The question if Metformin protects 
or harms cognitive health in older people has been 
unresolved until now [76]. 
 

Thiazolidinediones 

These drugs are agonists of the peroxisome proliferator-
activated-receptor-gamma (PPAR-gamma) [77]. Currently 
only pioglitazone is approved in DM therapy. 
Rosiglitazone has been withdrawn from the market due to 
a high incidence of cardiovascular events. Both drugs have 
been tested as potential treatment in AD with 
inconclusive results. PPAR-gamma has shown an 
increased expression in AD temporal cortex compared to 
controls [78]. In preclinical studies PPAR-gamma agonists 
have been shown to ameliorate AD-related pathology by 
reducing the expression of inflammatory genes and 
decreasing amyloid plaques [79]. 
 
Galimberti and Scarpine performed a literature search for 
pioglitazone and AD trials. A phase 2 study in AD showed 
that pioglitazone is safe and well tolerated. So far two 
large phase 3 trials are ongoing but there are no 
preliminary results yet on a possible beneficial effect on 
cognition in patients with AD [80]. Heneka et al. [81] 
analyzed the data of a cohort (n=145.928) using 
pioglitazone and looked at the association of pioglitazone 
and the incidence of dementia. All subjects were > 60 
years. Long-term pioglitazone use was associated with a 
lower dementia incidence. Relative to non-diabetics the 
cumulative long-term use of pioglitazone reduced the 
dementia risk by 47% (RR=0,53;p=0.029). If diabetic 
patients used pioglitazone <8 quarters the dementia risk 
was comparable to nondiabetics (RR=1,16; p=0,317) and 
diabetics without pioglitazone treatment had a 23% 
increase in dementia risk ( RR=1,23;p<0,001). They 
concluded that prospective trials are needed to evaluate a 
possible neuroprotective effect. 
 
GLP-1 receptor agonists 

GLP-1(glucagon like peptide- 1) seems to have favorable 
effects within the CNS, where activation of GLP-1 
receptors protects against apoptosis. Several preclinical 
studies in transgenic mice and rats showed favorable 
results [82,83]. Gejl et al. [84] performed a 6-month RCT 

with liraglutide in AD patients (n=38) and measured 
cerebral glucose metabolism as a parameter of AD 
progression. They concluded that in AD patients with 
longstanding disease 26 weeks of liraglutide treatment 
prevented the expected decline in cerebral glucose 
metabolism. They found no significant differences for this 
parameter between the liraglutide and the placebo group. 
A larger trial with liraglutide (ELAD) is ongoing and a trial 
with exanatide (n=60) showed some beneficial effects in 
motor symptoms in Parkinson patients treated for 60 
months [10]. 
 

Type 1 DM and dementia 

There has been a paucity of work in type 1diabetes and 
dementia because only recently have they been living 
longer and living long enough to be at risk for an age-
related neurocognitive dysfunction. Whitmer et al. [85] 
evaluated dementia risk in older people with type 1 
diabetes. They followed the health histories of 490. 344 
people in the Kaiser Permanente Health system during 12 
years. The patients were older than 60 with no prior 
dementia. The investigators identified 334 patients with 
type 1 diabetes n that group and 53 (6,5%) of these 
patients received diagnosis of dementia. 
 
Patients in late life have an approximately increased risk 
of dementia compared with patients who do not have 
dementia. The risk appears similar to that for those with 
type 2 DM [85]. With a prevalence of 5% -10% type 1 DM 
is a rare disease for studying dementia in diabetes 
compared to type2 diabetes. Patients with type 1 DM are 
three times more likely to have had hypoglycemic 
episodes than type 2 DM patents [86]. Both 
hyperglycemic and hypoglycemic events increased 
dementia risk(139% Vs 47%)-(88). So 
hypoglycemiceisodes are not the culprit. Patients with 
type 1 DM have more microvascular risk factors than 
those with type 2 DM and have less adiposity and 
concomitant insulin resistance. In contrast patients with 
type 2 DM are more likely to have macrovascular risk 
factors such as end-stage renal disease or retinopathy and 
or a relatively high risk for stroke. Dementia in type 1 DM 
will be mostly mixed of nature, a combination of 
cerebrovascular disease and Alzheimer’s [87]. This will 
complicate the study of Alzheimer’s in type 1 DM due to 
the low prevalence in type 1 DM. 
 

Conclusion 

It may be obvious from this mini-review that following 
the failure of all Alzheimer amyloid trials antidiabetic 
drugs will not be the new cure for AD. Favorable results 
are usually present in animal studies, predominantly in 
transgenic mice a mankind created model. It is always 
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easier to fix a problem you created yourself. Clinical 
studies with antidiabetic drugs are small have many 
methodological flaws and show inconsistent and 
unexplained results probably related to differences in 
genotype gender and differences in drug formulations. 
 
Research on antidiabetic drug in AD also relies heavily on 
the amyloid-beta-tau hypothesis. However it may be 
concluded that we don’t understand this disease [88]. In 
an editorial in the New England Journal of Medicine 
Murphy wrote ”the field is clearly in need of innovative 
ideas and we are very well be nearing the end of the 
amyloid hypothesis rope” [89]. 
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