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Abstract

The terpenoids have been prized for their human uses over two thousand years. Plants have the potentiality to produce a diverse 
nature of secondary metabolites that have versatile biological functions. Most of the phytochemicals are useful to us. About 
140 different sesquiterpenes have been isolated from the genus Curcuma, and they can be classified into ten distinctly different 
structural types. However, most of these compounds fall into one of the three major categories, bisabolane, germacrane, or 
guaiane types. These plants used commonly in food technology as well as pharmaceutical industries. The key constituents of 
exhibit a wide range of bioactive potentialities like anticandiadal, antibacterial and antimetastatic activities. Curcuma caesia is 
endemic to the North East Asia, where an infusion of the rhizomatous parts of the plant is used in folk medicine as an antidiabetic, 
anticancerous agent. Consequently, the reveal of medicinal properties of the secondary metabolites of this plant have been the 
subject of an ongoing study. Now a day, solving the mystery of bioactive potentiality of natural product is one of the largest thrust 
areas of research in life science. Nature possesses all the disease curing agents (bioactive phytochemicals) that we need to reveal 
for our healthy life style. The use of Black Turmeric, Turmeric etc. in Indian tradition is found from ancient time, even when 
people do not exactly know the actual bioactive potentiality or mode of action of phytochemicals present in the extract of Black 
Turmeric and Turmeric.
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Introduction

An archaeological investigation in Egypt in 1997 unearthed 
Boswellic acids from the resin of frankincense (Boswellia 
sp.) dating from 400 to 700 AD. The terpenes have a simple 
unifying feature by which they are defined and by which they 
may be easily classified. This generality, referred to as the 
isoprene rule or fundamental repeating five carbon units. 
Like all natural products, within this simple classification 

lies an enormous amount of structural diversity that leads 
to a wide variety of terpene like (or terpenoid) compounds. 
Some 30,000 terpenes were identified thus far. In this thesis 
the compound 2, 7, (14), 10 bisabolatriene- 1,9,12 triol 
[1] isolated from Curcuma longa L. is a bisabolane type 
sesquiterpene. Though the compound was reported from 
Curcuma xanthorrhiza Roxb. but its presence in turmeric has 
been reported first in the laboratory and has been included 
in this review. The bisabolanes are one of the three fairly 
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large groups of sesquiterpenes found in the genus Curcuma. 
At least 34 different bisabolane type sesquiterpenes 
have been reported from nine species of the Curcuma. C. 
aromatica Salisb., C. longa L., C. Xanthorrhiza Roxb., and 
C. zedoaria (Christm.) Roscoe are the four major sources 
of these compounds. Ar-Turmerone is the most widely 
distributed bisabolane type sesquiterpene within C. zedoaria 
(Christm.) Roscoe. Bisacumol, α-curcumene, β-curcumene, 
and zingiberene were reported from four or more species. 
While compounds α-curcumene and β-curcumene are fairly 
common, γ-curcumene was only isolated from C. caesia 
Roxb. [2]. Xanthorrhizol isolated from C. aromatica Salisb. 
and C. xanthorrhiza Roxb. [3], is one of the most important 
biologically active components of this genus.

Several other ethno medicinally important plants belonging 
to the genus Curcuma are C. aeruginosa, C. alismatifolia, C. 
amada, C. angustifolia, C. aromatic, C. caulina, C. chuanyujin, 
C. cochinchinensis, C. comosa, C. heyneana, C. harmandii, C. 
kwangsiensis, C. parviflora, C. petiolata, C. phaeocaulis, C. 
rotunda, C. wenyujin, C. zedoaria all of which are more or less 
therapeutically important. C. aeruginosa contains Aerugidiol, 
Cineole, Camphor, Curcumenol, Curdione, Curzerenone, 
Dehydrocurdione, Difurocumenone, Isocurcumenol, Pinene, 
Zedoalactone and Zedoarondio,l etc. [4]. C. alismatifolia 
contains Malvidin 3-rutinoside [5]. C. amada contains Bis-
demethoxycurcumin, Curcumin, Calarene, Caryophyllene, 
Copaene, Curzerenone, Myrcene and Terpinen-4-ol, etc. 
[6,7]. C. angustifolia contains Curzerene in its rhizome. C. 
aromatic is one of the wild species of Curcuma that possess 
Curcumin, Demethoxycurcumin, Acetoxyneocurdione, 
Acetoxydehydrocurdione, Bisabolene, Bisacumol, Carene, 
Carvacrol, Curzerene, etc. [7].

Curzerene, Demethoxycurcumin, 1-Feruloyloxy-2-
methoxycinnamic acid, 4-Epi-curcumenol, Isocurcumenol, 
(E) Acetoxy-diphenyl 1 heptene, (E) Diphenyl 1 
hepten 5 one, (E)- Dihydroxyphenyl -hydroxy-phenyl-
heptene, Curcumanolide, Labdadiene, Oxycurcumenol, 
Gweicurculactone etc. have ben already reported from 
C. caulina, C. chuanyujin, C. cochinchinensis, C. comosa, C. 
heyneana, C. harmandii, C. harmandii, C. kwangsiensis, C. 
xanthorrhiza, C. zedoaria, etc [8]. The rhizomes of C. longa 
exclusively contain Cyclocurcumin, Atlantone, Calebin, 
Caffeic acid, Caryophyllene, Curlone, Eugenol, Farnesene, 
Germacrone, Procurcumadiol, Isoprocurcumenol, Sabinene, 
Syringic acid, Terpenolene, Terpinen, Vanillic acid, 
Zedoarondiol and Ukonans, neutral polysaccharides [9].

As per literature survey it is evident that few reports are 
available regarding the phytochemical constituents of C. 
caesia. Borneol, Bornyl acetate, Cineole, Camphor, Curcumene, 
Elemene, Ocimene and Turmerone have been reported till 
now from C. caesia [2,7,10]. To add some more knowledge on 

the phytochemical constituents of C. caesia we have isolated, 
purified and indentified more three novel phychemicals and 
also cited their bioactive potentialities in this thesis. These 
three terpenoids are C24, C11 and C19 terpenoids and these 
are (2Z,2’Z)-2,2’- (3aR,10aS)- 1,3,5,8,9,9-hexamethyl- 1,2,3,3 
a- tetrahydrobenzo [f] azulene-4,10 (5H,8H,9H,10aH)- 
diylidene) diacetaldehyde, (Z)-7-methoxy-1,5-
dihydrobenzo[c] oxepine and 2,3,4,8a,9,9a-hexamethyl-
2,3,3a,4,4a,5,8,8a,9,9a-decahydro-1H-cyclopenta [b] 
naphthalene-1,2,3a,4a-tetraol respectively. Al these three 
terpenoids isolated from Curcuma caesia Roxb. was reported 
for the first time in the field of phytochemistry.

Turmeric powder is a powerful antioxidant good for 
cardiovascular, skeletal, and digestive systems. It has 
beneficial effect on the ligaments, treatment of cervical 
cancer, biliary disorders, anorexia, cough, diabetic wounds, 
hepatic disorders, rheumatism, and sinusitis [11]. Turmeric 
extract possesses anti-inflammatory, anti HIV, antibacterial, 
antioxidant properties, and nematocidal activities [12-15]. It 
also has immune-enhancing properties [13,16].

In a recent study, it was suggested that most of the beneficial 
effects of turmeric could be related to its prominent free 
radical scavenging property [17]. Extracts of turmeric 
reduced secretion of acid from the stomach and protected 
against injuries such as inflammation along the stomach or 
intestinal walls, and ulcers caused from certain medications, 
stress, or alcohol. There has been a substantial amount of 
research on turmeric’s anticancer potential against various 
forms of cancers including colorectal, prostate, oral, blood, 
and breast cancers [18]. Several authors [19] reported that 
turmeric extract was effective in inducing apoptosis in human 
myeloid leukemia cells (HL-60). Several authors studied the 
pharmacodynamics and pharmacokinetic behavior of oral 
administration of turmeric extract in patients with colorectal 
cancer. 

The, double-ended chelating compounds, synthesized by the 
acetylation of diamines, have previously been reported to be 
very effective for cancer chemotherapy, due to their chelating 
effect with the substrate [20,21]. In our report also the 
acetylated derivative of 2, 7, (14), 10 Bisabolatriene- 1,9,12 
triol shows greater antitumor activity than the parental 
compound [1].

Although, the crystal structure studies of many of these 
compounds have previously been reported [22,23] and in 
some cases these compounds have been used in the synthesis 
of their metal complexes [24-28] but no systematic studies 
for the characterization of these compounds have been 
carried out and no report on the antibacterial and antifungal 
studies of these compounds exists.
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Turmeric also possesses antioxidant property, and this 
property has been implicated to its various pharmacological 
activities [18,29-32].

The antimicrobial activities of an ethanolic extract were 
evaluated against several strains of bacteria and fungi 
[33-36]. The extract was effective against fungi Fusarium 
oxysporium, Aspergillus niger, A. nidulans, Alternaria solani, 
Botrytis cineria, Erysiphe graminis, Phytophthora infestans, 
Puccinia recondita, Pyricularia oryzae, Rhizoctonia solani 
[37] and bacteria Staphylococcus albus, Escherichia coli, 
and Pseudomonas pyocyanea, Helicobacter pylori [38], 
Actinomycetes [18] etc.

In continuation to this there are several reports that deals 
with the bioactive potentialities of the pure compound 
isolated from different species of Curcuma. Curcumin, 
demethoxycurcumin, bis-demethoxycurcumin, and ar-
turmerone possess a variety of therapeutic properties 
including anti alzheimer’s, anticancer, antiarthritic, anti-
inflammatory, antiedemic, antitumor, antimutagenic, 
anticoagulant, hepatoprotective, antihypercholesterolemic, 
nephrotonic, antihypertensive, chemoprotective, 
carminative, depurative, anti-HIV, antimicrobial, and 
antiparasitic properties [11,19]. They found to block the 
production of certain prostaglandins and had effects similar 
to cortisone and nonsteroidal anti-inflammatory drugs but 
without any side effects [39,40]. 5′-methoxycurcumin, from 
C. xanthorrhiza also possesses potent antioxidant activity 
[41].

Labda-8 (17), 12-diene- 15, 16-dial isolated from C. longa 
shows strong antifungal activity against Candida albicans 
at 1 μg/ml, and inhibited the growth of C. kruseii and C. 
parapsilosis at 25 μg/ml. The antibacterial potentiality of 
Xanthorrhizol from C. xanthorrhiza against Streptococcus 
mutans was also reported.

Most of the ethno medicinally important plants grow 
naturally in its specific season. So, the bioactive natural 
products present there in are not available in nature 
throughout the year. The solution of this problem lies within 
the in-vitro propagations of these plants. The aspects for in-
vitro propagation do not only involve with the availability of 
these plants, but also with scientific conservation to maintain 
the biodiversity. In-vitro propagation also indirectly deals 
with the in-vitro production such bioactive natural products 
from aseptic cultures of these ethno medicinally important 
plants.

Improvement in tissue culture technique for the production 
of bioactive natural products (therapeutic compounds) 
has made possible the production of a wide variety of 
pharmaceuticals like alkaloids, terpenoids, steroids, saponins, 

phenolics, flavanoids, and amino acids. Mainly higher plants 
are the major sources of bioactive natural products used 
as pharmaceuticals, agrochemicals, flavor and fragrance 
ingredients, food additives, and pesticides [42]. Generally, 
the concentration of bioactive natural products in plant cell 
is sometimes less which may not enough to cure any disease. 
So, to increase the generation or production of the bioactive 
natural products plant tissue culture is advantageous [43]. 
Cell suspension culture systems is one of this advancement 
in tissue culture that could be used for large scale culturing 
of plant cells from which secondary metabolites could be 
easily extracted. The rationale behind choosing this system 
is that it can ultimately provide a continuous and reliable 
source of natural products [44,45].

The presence of valuable chemicals in plants stimulates 
interest on the part of industries in the fields of 
pharmaceuticals (as drug sources), agrochemicals (for the 
supply of natural fungicides and insecticides, crop protactant), 
nutrition (for the acquisition of natural substances used 
for flavoring and coloring foods), and cosmetics (natural 
fragrances). The world market for biotechnological products 
increased greatly in recent decades. For example, in 2000, 
biopharmaceuticals represented a global market valued at 
over $12 billion (U.S. currency). Since then, the industry has 
expanded considerably, despite being severely limited by the 
manufacturing capacity and cost of the production systems 
currently in place. Therefore, an alternative source for desired 
secondary metabolites is of great interest. Cell and tissue 
cultured plant materials can be an attractive alternative as 
a production system and as a model system with which to 
study the regulation of natural product biosynthesis in plants 
to ultimately increase yields.

Thus, plant biotechnology can supply information to 
optimize phytochemical production in plant cell and tissue 
culture through sustainable, economically viable cultivation. 
However, trials with different plant cell cultures initially 
failed to produce high levels of the desired products. Several 
medicinal plants are employed in our studies concerning 
plant cell biotechnology. These include Hawthorn 
(Crataegus), which produces proanthocyanidins and several 
kinds of flavonoids used for the treatment of heart disease; 
St. John’s wort (Hypericum perforatum), which produces 
anti-depressant and anticancer compounds like hyperforin 
and hypericins; Flax (Linum spp.), for the production of 
cytotoxic lignans such as podophylotoxin and 5 methoxy 
podophylotoxin; Kudzu (Pueraria montana) as a source 
of isoflavones, daidzein, genistein, and their respective 
glucoside conjugates, daidzin (daidzein 7 O glucoside) and 
genistin (glucosyl 7 genistein) plus puerarin (daidzein 
8 C glucoside). Each of these plants made important 
contributions to the pharmaceutical industry. In all plant 
cell studies, the up regulation of biosynthesis processes of 
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several compounds using genetic and epigenetic approaches 
are now being considered as viable approaches. A new 
direction of research in plant cell biotechnology, namely, 
plant metabolic engineering, is currently progressing rapidly. 
Rational engineering of secondary metabolic pathways 
requires a thorough understanding of the whole biosynthetic 
pathway and an unraveling of the regulatory mechanisms. 
Recent achievements were made in the altering of various 
pathways by use of specific genes encoding biosynthetic 
enzymes or genes that encode regulatory proteins [46,47]. In 
addition, new antisense genes are used to block competitive 
pathways. This could increase the total flux toward the 
desired secondary metabolites [48]. Shifting attention from 
recombinant proteins to metabolic engineering introduces 
new challenges. A better understanding of the basic metabolic 
process could be key information needed to produce high-
value natural products.

There is another important factor concerning the 
accumulation and storage of desired secondary metabolites 
in plants. Secondary metabolites in cell and tissue cultures 
are usually stored intracellular, as for example, in vacuoles 
or multicellular cavities, and transporters probably play an 
important role in the sequestration of secondary metabolites 
[49]. Moreover, many biosynthetic pathways in plants are 
long and complicated, requiring multiple enzymatic steps 
to produce the desired end-product. The major aims for 
engineering secondary metabolism in plant cells are to 
increase the content of desired secondary compounds, to 
lower the levels of undesirable compounds, or to introduce 
novel compound production into specific plants. Plant 
metabolism, however, concerns thousands of interacting 
pathways and processes. Therefore, engineering even known 
metabolic pathways will not provide the expected results. 
Extensive metabolic profiling must be more systematic 

and involve considerable analysis in this case. Productive 
metabolic engineering, therefore, is based on a systems 
biology approach involving integrated metabolomics, 
proteomics, and transcriptomics approaches [50,51]. 
Despite major advances in metabolic engineering, only a 
few secondary metabolic pathways were enzymatically 
characterized and the corresponding genes cloned. In this 
context, the biosynthetic pathways for alkaloids, flavonoids, 
and terpenoids are presently the best characterized at 
the enzyme and gene levels. Metabolic engineering is a 
potentially powerful tool for the regulation of secondary 
metabolism in transgenic plants, and it will certainly have 
many applications in the future [48].

The active principle content (bioactive natural products 
or therapeutic compounds) varies from organ to organ of 
the plant. Callus induction in tissue culture regime yield 
undifferentiated mass of cells results in homogenous 
production of active principle content throughout the 
culture. This innovation indirectly also leads to increase in 
massive in-vitro production of active principles.

Another possible way to increase the in-vitro production 
of active principles by Bio-transformations [52-55]. In this 
system, desired genes responsible for production of desired 
phytochemicals are transferred and expressed in in-vitro 
culture so that enhancement in the production of specific 
photochemical can be achieved. Due to these advances, 
research in the area of tissue culture technology for production 
of plant chemicals has bloomed beyond expectations [56]. 
Transgenic hairy root cultures have revolutionized the role 
of plant tissue culture in secondary metabolite production 
[57-61]. The various kinds of biotransformation processes 
are summarized in the following Table 1 along with their 
advantages and disadvantages.

Biotransformation 
processes Advantages Disadvantages

Agrobacterium 
mediated

Very effective, cheap and simple to 
use. Also can be used in germ line 

transformation.

Requires the use of a tissue culture regeneration 
procedure. Host range may be limited by the plant 

hypersensitive response.

Electroporation
Very effective for transient expression. 
Diverse host range. High DNA delivery 

rate.

Also requires the use of a tissue culture regeneration 
procedure. Copy number of DNA insertions can be high 
and sometimes resulting in gene silencing through co-

suppression.

Particle bombardment
Very effective especially for transient 

expression. No problems regarding host 
range.

Also requires the use of a tissue culture regeneration 
procedure. Copy number of DNA insertions can be high 
and sometimes resulting in gene silencing through co-

suppression.

Table 1: Comparison of different biotransformation processes.
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Conclusion

In conclusion we can say that in-vitro culture of ethno 
medicinally important plants for production of selective 
bioactive principles is found to be highly useful for 
commercial production of the medicinally important 
compounds. This large scale production in industries do not 
solely depends upon modern in-vitro culture techniques, 
but also with an improved understanding of the secondary 
metabolic pathways. This combined technology of in-vitro 
culture and improved knowledge regarding secondary 
metabolic pathways provide new means for the cost effective, 
commercial production of even rare or exotic plants, their 
cells, and the key phytochemicals that they will produce. 
Substantial progress in improving secondary metabolite 
production through in-vitro cultures has already been made 
within last few years, and with a progressive continuation 
to this, this field will lead to controllable and successful 
biotechnological production of specific, valuable, and as yet 
unknown plant phytochemicals in recent future.

So, there is a lot of work to be done in the field of 
phytochemistry, evaluation of their bioactive potentialities 
and application of plant biotechnology to improve the yield 
of phytochemicals including scientific conservation of these 
valuable ethno medicinally important plants. In our thesis, 
some steps have been attempted to enrich the information 
regarding the research of phytochemistry, evaluation of their 
bioactive potentialities and scientific conservation of few 
ethno-medicinally important plants (Curcuma longa L. and 
Curcuma caesia Roxb.).
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