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Abstract 

The protective role of silicon in relation to growth vigor of flag leaf, membrane characteristics (%), antioxidant enzymes, 
lipid peroxidation, membrane stability index (%) and membrane leakage, as well as non-enzymatic antioxidants and non-
photosynthetic pigment contents were investigated in alkalinity stressed sorghum plants. In the majority of cases, 
alkalinity stress induced significant reduction (p ≤ 0.05) in leaf area and degree of succulence (non-significant increase in 
case of sensitive cultivar) of both sorghum cultivars during grain-filling. On the other hand, alkalinity stress induced a 
clear increase (p ≤ 0.05) in the degree of leaf sclerophylly of tolerant cultivar and a non-significant increase in case of 
sensitive cultivar. Alkalinity stress reduced bio-membranes stability through increasing its lipid peroxidation resulting in 
an increase in membrane leakage (ML) with a simultaneous decrease in membrane stability index (MSI) in leaves of both 
sorghum cultivars. Moreover, it was obvious that alkalinity significantly increased the activity of catalyse, ascorbic acid 
oxidase (AAO) and peroxidase (POD) activities and induced a non-significant reduction in polyphenol oxidase (PPO) 
activity in leaves of both sorghum cultivars comparing with the control plants. Among cultivars, tolerant one showed 
higher enzymes activity than sensitive one. Application of silicon markedly increased AAO and POD activities as well as a 
non-significant decrease in PPO activity in leaves of alkalinity stressed sorghum plants. Alkalinity stress caused a non-
significant increase (p ≤ 0.05) in the amount of total phenols and flavonoids as well as non-photosynthetic pigment 
content (anthocyanin, β-carotene and lycopene contents) in flag leaf of both cultivars. In addition, application of silicon 
induced an additional increase (p ≤ 0.05) in total phenols and flavonoids as well as anthocyanin and β-carotene contents 
except for lycopene content which induced a non-significant decrease. These results suggest that the exogenous 
application of silicon assisted the plants to become more tolerant to alkalinity stress induced oxidative damage by up-
regulating the membrane characteristics and enhancing their antioxidant defense system.  
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Abbreviations: ROS: Reactive Oxygen Species; MDA: 
Malondialdehyde; AAO: Ascorbic Acid Oxidase; POD: 

Peroxidase; PPO: Polyphenol Oxidase; CAT: Catalase; ML: 
Membrane Leakage; MSI: Membrane Stability Index; TCA: 
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Trichloroacetic Acid; Si: Silicon; SOD: Superoxide 
Dismutase; APX: Ascorbic Acid Peroxidase; EC: Electric 
Conductance; MII: Membrane Injury Index; TV: Total 
Volume; VU: Volume Used; POX: Peroxidase. 

 
Introduction 

Efforts are underway to enhance the production of 
different crops to meet the food requirements of rapidly 
increasing population of Egypt. Selecting and cultivating 
the crops that can tolerate water salinity is potentially an 
important strategy to save fresh water resources and 
maximize the crop yield in salt affected areas. Sorghum 
(Sorghum bicolor L.) is an example of a so-called ancient 
whole grain cereal that is better known to Western 
societies as an animal feed rather than a human food 
source. Sorghum is grown around the world, and ranks 
fifth in global cereal production after maize, rice, wheat 
and barley [1]. In many countries of Africa and Asia, 
sorghum is widely cultivated due to its adaptability to 
semi-arid and arid conditions and high temperature. 
Sorghum-based foods are a good source of both iron and 
zinc [2].  
 
Alkaline stress, which is defined as the existence of 
alkaline salts (Na2CO3 or NaHCO3) in the soil [3] is one of 
the most crucial abiotic stressors which plants encounter 
in the era of climate change. A number of studies have 
shown that alkaline stress is more dangerous than saline 
stress, owing to its additional high pH stress [4]. High pH 
value may lead to reduction in seed germination, 
destruction of the root cell structure, and change in the 
nutrient availability and disorder in nutrient uptake and 
thus resulting in a significant decrease in the yield of 
agricultural plants [5]. Egyptian soils are in general 
distinguished by a little alkaline to alkaline pH values 
(7.5-8.7) which are mainly due to its arid ambience [6]. A 
few studies have been carried out on the effects of 
alkaline stress on plant growth and productivity. 
However, only scant information is available about the 
morphological, physiological, biochemical, and anti-
oxidative responses in plants under alkaline stress.  
 
Silicon (Si) is the 2nd most abundant element on the earth 
crust after oxygen. It is accumulated in plants at a rate 
comparable to those of macronutrient elements like 
calcium, magnesium and phosphorous [7]. It is evident 
that Si is beneficial for growth of many plants under 
various abiotic (e.g. salt, drought and metal toxicity) and 
biotic (plant diseases and pests) stresses [8]. A number of 
possible mechanisms are reported through which Si may 
increase salinity tolerance in plants including increased 
plant water status 9] and stimulation of ROS scavenging 
system [10].  

Priming of seeds with silicon (Si) is one of the major 
techniques, which can improve abiotic stress tolerance in 
plants [11]. Si is recognized as quasi essential element for 
plants because its deficiency results in various 
dysfunctions with respect to plant growth, evolution, and 
proliferation [12]. Si, as a fertilizer, bio-stimulator plant 
protectant, plays a pivotal role in enhancing the plants 
growth and productivity, especially in stress regimes [13]. 
Zea mays are classified as a Si accumulator and are 
relatively susceptible to alkaline stress. Si plays a pivotal 
role in alleviating the negative effects of alkaline stress on 
maize growth by improving water status, enhancing 
photosynthetic pigments, accumulating osmoprotectants 
rather than proline, activating the antioxidant machinery, 
and maintaining the balance of K+/Na+ ratio [14].  
 
Membranes are thought to play a central role in cell 
viability as they participate in metabolic activities of the 
plant either directly or indirectly. The degree of cell 
membrane injury induced by water stress may be easily 
estimated through measurements of membrane stability 
index (MSI) [15]. In addition, membrane leakage (ML) to 
cell electrolytes is an indicator of cell membrane integrity 
[16]. Furthermore, malondialdehyde (MDA) content is 
usually used to measure the extent of lipid peroxidation 
resulting from oxidative stress under water deficit 
conditions [17].  
 
Reactive oxygen species (ROS) are highly cytotoxic and 
can seriously react with vital biomolecules such as lipids, 
proteins, nucleic acid, etc., causing lipid peroxidation, 
protein denaturing and DNA mutation, respectively [18]. 
To minimize the deleterious effects of stress and to 
complete their life cycle under adverse conditions, plants 
have evolved different adaptive responses. Hence, the 
tolerance may be because of ion homeostasis, osmotic 
adjustment, efficient and synchronous action of various 
components of antioxidant defence system [19].  
 
Antioxidants are the first line of defence against free 
radical damage [20]. Enzymatic antioxidants include 
superoxide dismutase (SOD), catalase (CAT), ascorbic acid 
peroxidase (APX) and peroxidase (POD) [21]. There are 
several compounds which contribute to the anti-oxidative 
properties; these include anthocyanin, polyphenols, 
vitamin C, flavonoids and carotene [22]. Under salt stress, 
the level of non-enzymatic antioxidant was increased, due 
to their capacity to protect itself against oxidative stress 
[20]. This work was undertaken to explain the impacts of 
silicon (Si) on growth vigor of flag leaf, membrane 
characteristics, the antioxidant enzyme activities and non-
enzymatic antioxidants as well as non-photosynthetic 
pigment of sorghum plants grown in soil irrigated with 
different concentrations of alkaline salt.  
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Materials and Methods  

Plant material and experimental design  

This experiment was conducted in a greenhouse at Botany 
Department, Faculty of Science, Mansoura University, 
Egypt. Pure strains of sorghum (Sorghum bicolor L. 
(Moench) (Alkalinity sensitive and tolerant cultivars) was 
kindly supplied by the Agricultural Research Center, 
Ministry of Agriculture, Giza, Egypt. Grains of sorghum 
were surface-sterilized with mercuric chloride (0.01 M 
HgCl2) for 3 min, and then rinsed three times with 
distilled water. The sterilized grains from each cultivar 
were divided into two sets (≈ 500 g per set for each 
cultivar). Furthermore, the sterilized grains of each set 
were divided into two groups; the first group was primed 
with distilled water, and the second group with 1.5 mM of 
freshly prepared Si (as sodium meta-silicate 
Na2O3Si.5H2O) solution for 6h, thereafter air-dried. The 
grains of both groups were sown in plastic pots (five 
seeds/pot) filled with 5.5 kg of dried soil (clay/sand 2/1, 
v/v). The pots were arranged in completely randomized 
design in factorial arrangement. At the time of sowing, the 
grains were irrigated at field capacity with various 
alkaline salt concentrations of 0 (control), 25, 50, and 75 
mM Na2CO3 based on the method of Radi et al. [4] with 
each pot receiving 400 ml of a designated saline solution. 
The Na2CO3 concentrations used were equivalent to 0 
(control), 0.528, 1.056, and 1.584 g Na2CO3 kg−1 soil, 
respectively. Leaching was avoided by maintaining soil 
water below field capacity at all times. The Si and Na2CO3 
concentrations were selected based on our preliminary 
tests. The pots were then irrigated at field capacity with 
normal water through the whole experimental period.  
 
The pot of the 1st set was allocated to four groups (45 
pots per each group) as follows: control (Cont.), control 
Silicon, 25% Na2CO3, Silicon+25% Na2CO3, 50% Na2CO3, 
Silicon+50% Na2CO3, 75% Na2CO3, Silicon+75% Na2CO3 
(for sensitive cultivar). The 2nd set groups were allocated 
to four groups as follows: control (Cont.), control Silicon, 
25% Na2CO3, Silicon+25% Na2CO3, Silicon+50% Na2CO3, 
Silicon+75% Na2CO3 (for tolerant cultivar). After thinning 
and at heading, the plants received 36 kg N ha-1 as urea 
and 25 kg P ha–1 as superphosphate.  
 
Plant studies at heading stage  

At heading stage and when the plants were 60- day old, 
sampling was carried out for the first time to follow up 
the impact of alkalinity stress on the morph-physiological 
traits of the considered sorghum plants (i.e. growth vigor 
of flag leaf, antioxidant machinery and membrane 
characteristics were all investigated. For measurements, 
only the flag leaves of the main shoots were implemented 

because of its significance as a supply of photosynthetic 
products for grains (source- sink relationship).  
Leaf area = Length X Breadth X 0.75 [23] 
Degree of succulence = Water amount / Leaf area [24]  
Degree of sclerophylly = Dry mass / Leaf area [24]  
 

Assessment of membrane features  

The membrane parameters including lipid peroxidation, 
membrane injury index and membrane stability index 
were determined in the present study. For estimating 
these features, fresh sorghum flag leaves were caught up 
after being carefully washed via de-ionized water to 
eliminate every salt molecule that might be attached to 
the leaves surface.  
 
Determination of membrane lipid peroxidation  

The idea of estimating the membrane lipid peroxidation of 
the studied sorghum varieties was mainly depend on 
determining malondialdehyde (MDA) content following 
Heath & Packer. A known fresh weight of the flag leaves, 
particularly one gram, was homogenized via a porcelain 
mortar in 5 ml of 0.1% trichloroacetic acid (TCA). After 
that, the resulted homogenate from maceration was spin 
via centrifuge at high speed, mainly 10,000 rpm for about 
5 minutes. Every one ml of the supernatant was reacted 
with 4 ml of 20% TCA containing 0.5%. The reaction 
mixture was kept in water bath adjusted at 95°C for 30 
minutes incubation period then allowed to cool rapidly. 
The forming mixture was then centrifuged at high speed, 
mainly 10,000 rpm for about 15 minutes and the optical 
density of TBA-MDA complex in the supernatant was 
spectrophotometrically determined at 532 nm (OD532) 
and 600 nm (OD600). The optical densities were adjusted 
for unspecific turbidity by deducting OD600 from the 
values at maximum absorption OD532. The concentration 
of MDA was calculated using 155 × 10-3 μM-1 cm-1 as an 
extinction coefficient to be expressed as μmol MDA g-1 
fresh mass.  
 

Determination of membrane injury index  

The method used for the estimation of membrane injury 
index was that of Deshmukh et al. In two groups, a known 
fresh weight of flag leaves, particularly 0.2 gram, was 
sliced into minute sections with regular size to be 
transferred into test tubes containing 20 ml of de-ionized 
water. The first group was stored in water bath adjusted 
at 40°C for half an hour incubation period whereas the 
other group was incubated in boiling water bath for only 
15 minutes. After cooling, the electric conductance (EC) of 
sample in each group was read via a conductivity meter 
(model CD-4301). The percentage of membrane injury 
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index (MII) was calculated according to the subsequent 
relation:  

MII = (EC1 / EC2) × 100 
Where, EC1 and EC2 refer to the electric conductance in 
mS at 40 and 100°C; respectively.  
 

Determination of membrane stability index  

Many methods were earlier designed in other 
investigations to estimate membrane stability index 
(MSI). Nevertheless, an easy technique was disguised in 
the recent study to straightforwardly derive the value of 
MSI from that selected for MII. The percentage of 
membrane stability index (MSI) was calculated according 
to the following equation:  
MSI = 100 – MII  
 

Assessment of enzymatic antioxidant defense 
system  

In the current study, sex antioxidant enzymes; including 
catalase, peroxidase, polyphenol oxidase, ascorbic 
peroxidase, glutathione reductase and superoxide 
dismutase were assayed. The way followed for extraction 
of these enzymes was described by Agarwal & Shaheen 
[25]. A known fresh biomass, particularly two grams, of 
flag leaves of the various sorghum varieties was firstly 
washed with deionized water. After that, the leaves were 
handily homogenized via a porcelain mortar in 20 ml of 
refrigerated 0.1 M phosphate buffer. The buffer used for 
extraction of both ascorbic peroxidase and superoxide 
dismutase was prepared at pH 7.8. Meanwhile, for 
catalase, peroxidase, poly-phenol oxidase and glutathione 
reductase; the extraction buffer was prepared at pH 6.8. 
After that, the homogenate was filtered via a specie type 
of filters mainly 4 layers of cheesecloth as well as the 
filtrate was spin in a cooling centrifuge at 10,000 rpm for 
20 minutes. Finally, the supernatant was raised up to 20 
ml and thus stored as enzyme extract for assaying.  
 

Estimation of Catalase (CAT; EC 1.11.1.6)  

Enzyme extraction 

Homogenize a known weight of plant material with 
M/150 phosphate buffer (assay buffer diluted 10 times) 
in a pre-chilled mortar. The homogenate is then 
centrifuged at 5000 rpm for 15 min at 4 °C. Enzyme 
assays were conducted immediately following extraction. 
CAT activity was assayed in a method following Aebi [26]. 
Activity was determined by following the decomposition 
of H2O2 at 240 nm. On decomposition of H2O2 by catalase, 
the optical density decreases with time. Absorbance was 
read against a control cuvette containing enzyme solution 
as in the experimental cuvette, but with H2O2 - free PO4 

buffer (M/15). Into the experimental cuvette, 3 ml of H2O2 
- PO4 buffer) were transferred and mixed with 0.01 - 0.04 
ml sample. Δt required for the optical density decrease 
from 0.45 to 0.40 was recorded and used in the 
calculations.  
The enzyme specific activity units g-1 f wt = [17/ Δt] x [TV 
/ VU] x D x [1/ f wt];  
Δt = time change in second; TV = total volume of the 
extract (ml); VU = volume used (ml); D = dilution; f wt = 
weight of the fresh leaf tissue (g)  
 

Assay of peroxidase (POX; EC 1.11.1.7.)  

Peroxidase activity was assayed following the method 
adopted by Devi [27]. The principle of assaying POX 
activity depends on the production of purpurogallin due 
to the peroxidation of pyrogallol. The activity was 
monitored by recording the increment of optical density 
at 420 nm. The reaction mixture was prepared as 3 ml of 
pyrogallol phosphate buffer (0.05 M pyrogallol in 0.1 M 
phosphate buffer at pH 6.0), 0.5 ml of H2O2 (1%) and 0.1 
ml of the enzyme extract. The blank tube contained the 
same contents except replacing the enzyme extract with 
de-ionized water.  
 

Assay of polyphenol oxidase (PPO; EC 1.14.18.1.)  

Following Devi [27], PPO activity was assayed as the 
change in optical density at 420 nm. The idea of assaying 
PPO activity relies on the oxidation of pyrogallol into 
purpurogallin. The reaction mixture contained 1 ml 
pyrogallol, 2 ml of 0.02 M phosphate buffer at pH 7 and 
0.1 ml of the enzyme extract. The blank tube contained 
the same contents except replacing the enzyme extract 
with de-ionized water.  
 

Assay of ascorbic peroxidase (APX; EC 1.11.1.11.)  

Ascorbic peroxidase activity was determined following 
the strategy adopted by Nakano & Asada. The activity of 
APX was assayed as the decrement in optical density at 
290 nm as a result of the ascorbate peroxidation into 
dehydroascorbate. The reaction mixture was prepared as 
2.5 ml of ascorbic acid (0.5 mM in phosphate buffer at pH 
7.0), 0.4 ml of H2O2 (2 mM) and 0.1 ml of the enzyme 
extract. The blank tube contained the same contents 
except replacing the enzyme extract with de-ionized 
water.  
 

Phenolic constituents 

To determine the phenolic compounds synthesized by 
sorghum plants under the studied conditions, the 
following methods were followed to estimate total 
phenols and flavonoids.  
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Estimation of flavonoids 

The total flavonoid content was determined following the 
spectrophotometric method of Dewanto et al. [28]. To the 
methanolic extracts of the plant tissue, 0.3 ml of 5% 
NaNO2 solution was added; at 5 minutes, 0.3 ml of 10% 
AlCl3 was added; and at 6 minutes, 2 ml of 1 N NaOH was 
added. About 2.4 ml of distilled water was then added and 
mixed well, and the absorbance of the reaction mixture 
was measured at 510 nm.  
 

Estimation of total phenols 

Total phenols were estimated using the method of Malik 
& Singh [29], depending on the reaction of phenols with 
phosphomolybdic acid in Folin-Ciocalteau reagent in an 
alkaline medium to produce blue-colored complex 
(molybdenum blue). A known dry weight of the plant 
tissue was ground in 10 ml of 80% ethanol. The 
homogenate was centrifuged at 10,000 rpm for 20 
minutes. The supernatant was saved and the residue was 
re-extracted with 5 ml of 80% ethanol, centrifuged and 
the supernatant was collected. The supernatant was 
evaporated to dryness and the obtained residue was 
dissolved in 5 ml of distilled water. Half ml aliquots from 
each sample were pipetted into test tubes. The volume in 
each tube was made up to 3 ml with distilled water, 
followed by the addition of half ml of Folin-Ciocalteau 
reagent. After 3 minutes, 2 ml of 20% Na2CO3 solution was 
added and the tubes were incubated in a boiling water 
bath for exactly one minute. After cooling, the optical 
density of the colour developed was measured 
spectrophotometric ally at 650 nm.  
 

Non-photosynthetic pigment 

The medically-active non-photosynthetic pigment 
determined in this study includes anthocyanin, β-carotene 
and lycopene.  
 

Estimation of lycopene and β-carotene 

Lycopene and β-carotene were determined according to 
the method of Nagata & Yamashita [30]. An aliquot 
volume of the methanolic extract was vigorously shaken 
with 10 ml of an acetone: hexane mixture (4: 6, v/ v) for a 
minute and filtered through Whatman No. 4 filter paper. 
The absorbance (A) was measured at various 
wavelengths; namely 453, 505 and 663 nm. The contents 
of lycopene and β-carotene were calculated according to 
the following equations:  

Lycopene = 0.0458 (A663) + 0.372 (A505) - 0.0806 
(A453)  
β -carotene = 0.216 (A663) - 0.304 (A505) + 0.452 (A453)  
 
Estimation of anthocyanin 

Anthocyanin were extracted from the oven-dried ground 
tissues by suspending in 10 ml of acidified methanol 
(methanol: water: HCl, 79: 20: 1, v/ v) and auto extracting 
at 0°C for 72 hours in dark with continuous shaking. The 
extracts were then centrifuged for 10 minutes at 5000 
rpm and the absorbance was measured at 530 and 657 
nm for each supernatant [31].  
Anthocyanin = A530 - 1/3 A657  
 

Statistical analysis 

It should be mentioned that the sample numbers which 
were taken for investigation were as follows: ten for 
growth parameters and three for all chemical analyses 
and only the mean values were represented in the 
respective figures. The data were subjected to one-way 
analysis of variance (ANOVA), and different letters 
indicate significant differences between treatments at p ≤ 
0.05, according to CoHort/ CoStat software, Version 
6.311.  
 

Results  

Changes in flag leaf growth  

Perusal of the data shown in Figure 1 cleared that, in 
general, all concentrations of alkalinity caused noticeable 
decreases (P ≤ 0.05) in growth vigor of flag leaf (i.e. flag 
leaf area, leaf fresh mass, leaf dry masse as well as degree 
of succulence and the degree of leaf sclerophylly) as 
compared to the control. On the other hand, application of 
silicon (without alkalinity) leads to increase the previous 
parameters significantly than that of control of both 
sorghum cultivars. The applied silicon plus alkalinity 
stress also increase the previous parameters in compared 
with alkalinized plants but still less than control except in 
case of pre-soaking with silicon with low alkalinity (25%) 
which significantly increase (leaf fresh mass) of sensitive 
sorghum cultivar and also except in case of pre-soaking 
with silicon with high alkalinity (75%) in sensitive 
cultivar recorded a clear reduction and in tolerant one 
recorded a non-significant reduction. Generally, tolerant 
cultivar induced better results than sensitive one.  
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Figure 1: Effect of sodium meta-silicate on growth vigor of flag leaf (flag leaf fresh, dry masses (g), flag leaf area (cm2), 
degree of succulence (mg cm2) and degree of sclerophylly (mg cm2)) of alkaline sorghum cultivars. Vertical bars 
represent standard error of the mean (n=3). Different letters indicate significant differences between treatments at p 
≤ 0.05, according to CoHort/ CoStat software, Version 6.311. 
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Figure 1: Effect of sodium meta-silicate on growth vigor of flag leaf (flag leaf fresh, dry masses (g), flag leaf area (cm2), 
degree of succulence (mg cm2) and degree of sclerophylly (mg cm2)) of alkaline sorghum cultivars. Vertical bars 
represent standard error of the mean (n=3). Different letters indicate significant differences between treatments at p 
≤ 0.05, according to CoHort/ CoStat software, Version 6.311. 

 

 
Changes in membrane characteristics and 
antioxidant capacity 

This experiment was designed to investigate the positive 
effect of grain priming with silicon (Si) on membrane 
characteristics and antioxidant capacity by determining 
enzymatic antioxidant and non-enzymatic antioxidant as 
well as non-photosynthetic pigment in flag leaf of both 
alkalinity sorghum cultivars.  
 

Changes in lipid peroxidation  

As compared to the control values, the results in Figure 2 

reflected that all concentrations of alkalinity increased 
lipid peroxidation of both sorghum cultivars. Moreover, 
application of silicon caused a significant decrease (p ≤ 
0.05) in lipid peroxidation of tolerant sorghum cultivar 
and a non-significant decrease in sensitive cultivar as 
compared with control plants. The applied silicon plus 
alkalinity stress increase lipid peroxidation as compared 
with control plants except in case of pre-soaking with 
silicon with low alkalinity (25% in sensitive cultivar; 25% 
and 50% in tolerant one) which recorded a non- 
significant decrease.  
 
 

 

Figure 2: Effect of sodium meta-silicate on lipid peroxidation as malondialdehyde (MDA) content (mmole g-1 d wt) as 
well as membrane stability index (MSI) % and membrane leakage (ML) % in flag leaf of alkaline sorghum cultivars. 
Vertical bars represent standard error of the mean (n=3). Different letters indicate significant differences between 
treatments at p ≤0.05, according to CoHort/ CoStat software, Version 6.311. 
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Figure 2: Effect of sodium meta-silicate on lipid peroxidation as malondialdehyde (MDA) content (mmole g-1 d wt) as 
well as membrane stability index (MSI) % and membrane leakage (ML) % in flag leaf of alkaline sorghum cultivars. 
Vertical bars represent standard error of the mean (n=3). Different letters indicate significant differences between 
treatments at p ≤0.05, according to CoHort/ CoStat software, Version 6.311. 

 
 

Changes in membrane stability index (MSI) and 
membrane leakage (ML)  

Data shown in Figure 2 cleared that, the pattern of change 
in MSI % is opposite to that in ML %. As compared to 
control plants, the significant reduction (p ≤ 0.05) 
recorded in MSI % in response to alkalinity stress was 
accompanied with an increase in ML % of both sorghum 
cultivars. The effect was more pronounced with the 
sensitive one. The applied silicon plus alkalinity stress 
induced marked decrease (p ≤ 0.05) in MSI as compared 
with control plants except in case of pre-soaking with 

silicon with low alkalinity (25% in sensitive cultivar; 25% 
and 50% in tolerant one) which recorded a significant 
increase. Generally, tolerant cultivar induced more 
response results than sensitive one.  
 

Changes in antioxidant enzymes activity  

The data presented in Figure 3 showed that, all 
concentrations of alkalinity increased catalase, ascorbic 
acid oxidase (AAO) and peroxidase (POD) activities except 
in case of high alkalinity (75% which recorded a non- 
significant decreased). Alkalinity stress caused a 
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significant decrease in PPO activity in flag leaf of both 
sorghum plants except for 25% alkalinity in case of 
tolerant cultivar recorded a significant increase. Silicon 
application induced marked increase (p ≤ 0.05) in 
catalase, ascorbic acid oxidase (AAO) and peroxidase 
(POD) activities and induced a non- significant reduction 
in polyphenol oxidase (PPO) activity in flag leaves of both 
sorghum cultivars comparing with the control plants. 
Among cultivars, tolerant one showed higher enzymes 
activity than sensitive one. The applied silicon plus 

alkalinity stress induced marked increase (p ≤ 0.05) in 
catalase, ascorbic acid oxidase (AAO) and peroxidase 
(POD) activities in comparing with control plants except 
in case of pre-soaking with silicon with low alkalinity 
(25% in sensitive cultivar; 25% and 50% in tolerant one ) 
which recorded a non- significant decrease. The applied 
silicon plus alkalinity stress caused a non -significant 
decrease in PPO activity in flag leaf of alkalinity stressed 
sorghum plants except for 75% alkalinity in case of 
tolerant cultivar recorded a non- significant increase.  

 
 

 

 

Figure 3: Effect of sodium meta silicate on non-photosynthetic pigment; β-carotene (μg g-1 d wt)), anthocyanins   (mg 
g-1 dry wt) and lycopene (μg g-1 d wt) and of flag leaf of alkaline sorghum cultivars. Vertical bars represent standard 
error of the mean (n=3). Different letters indicate significant differences between treatments at p ≤ 0.05, according to 
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Changes in phenolic compounds  

Data in Figure 4 revealed that all concentrations of 
alkalinity increased the amount of total phenols and 
flavonoids in flag leaf of both cultivars except in case of 
pre-soaking with silicon with high alkalinity (75% in 
sensitive cultivar; 50% and 75% in tolerant one) which 

recorded a non- significant decrease. Moreover, all 
alkalinity stress levels plus silicon caused a non- 
significant increase (p ≤ 0.05) in the amount of total 
phenols and flavonoids in flag leaf of both cultivars except 
in case of pre-soaking with silicon with high alkalinity 
(75% in sensitive cultivar; 50% and 75% in tolerant one ) 
which recorded a non- significant decrease. 
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Changes in non-photosynthetic pigment  

In relation to sorghum cultivar, the flag leaves of the 
control tolerant plants had higher non-photosynthetic 
pigment (anthocyanin and lycopene) contents than the 
sensitive one (Figure 5). All concentrations of alkalinity 

increased non-photosynthetic pigment (anthocyanin, 
lycopene and β-carotene) contents except in case of low 
alkalinity (25% in sensitive cultivar in case of 
anthocyanin) which recorded a non- significant increase. 
Moreover, application of silicon caused a non-significant 
increase in anthocyanin and a non-significant decrease (p 
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≤ 0.05) in lycopene and β-carotene contents in both 
sorghum cultivars. Alkalinity stress plus silicon 
application resulted in a non- significant increase (p ≤ 
0.05) in anthocyanin and β-carotene contents of the two 
sorghum cultivars except in case of pre-soaking with 
silicon with high alkalinity (75% in sensitive cultivar) 

which recorded a non- significant decrease. Application of 
silicon induced a non- significant decrease (p ≤ 0.05) in 
lycopene content. While, alkalinity stress plus silicon 
application resulted in a non- significant increase (p ≤ 
0.05) in lycopene content of the two sorghum cultivars.  

 
 

 

 

Figure 5: Effect of sodium meta silicate on phenolics content (total phenols (μg g1 d wt) flavonoids (mg/ 100g d wt)) of 
flag leaf of alkalinity sorghum cultivars. Vertical bars represent standard error of the mean (n=3). Different letters 
indicate significant differences between treatments at p ≤ 0.05, according to CoHort/ CoStat software, Version 6.311. 
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Discussion  

In this study, the impacts of Si as an agriculturally 
effective fertilizer element on mitigation of alkalinity 
pressure were studied in sorghum. The detrimental 
influences caused by alkaline salt on different growth 
parameters of sorghum plants could occur due to the raise 
in pH, reduction in cell enlargement and cell division, 
metabolic disorders, nutritional damage and ion 
imbalance. Alkalinity is one of the major abiotic stress 
factors that affect plant growth and productivity, 
especially in arid and semi-arid areas. Grain sorghum 
after rice and wheat is the third important food grain for 
many people. The plant responses to water stress differ 
significantly at various organizational levels depending 
upon intensity and duration of stress as well as plant 
species and its stage of growth [32]. The response and 
adaptation of plants to such conditions are very complex 
and highly variable [33]. Of all these methods, exogenous 
application of Si an effective method to alleviate the 
adverse effects of alkalinity stress.  
 
Flag leaf plays the key and the most important role in 
plant life as it transport assimilates to spike and 
developing grains. The performance of flag leaf under 
certain growth condition reflects the overall viability and 
development of the whole plant. The results obtained in 
the present study, as shown in Figure 1, revealed that 
alkalinity caused marked reduction in leaf biomass, area 
and degree of succulence. On the other hand, Si caused 
massive increase in the cumulative degree of leaf 
scleraphylly. In agreement with our results, Sankar et al. 
[34] also reported that total leaf area as well as leaf fresh 
and dry weight in Abelmoschus esculentus plants were 
significantly reduced under drought stress. The general 
pattern of plant response to stress is a reduction in the 
rate of leaf surface expansion, followed by a cessation of 
expansion as the stress intensifies [35]. The retardation of 
leaf growth in stressed plants could be attributed to 
decreased turgor that may diminish cell production 
within the leaves.  
 
Stressing the studied sorghum plants by alkalinity caused 
marked reduction in growth vigor of flag leaf (i.e. flag leaf 
area, leaf fresh mass, leaf dry masse as well as degree of 
succulence and the degree of leaf sclerophylly) (Figure 1). 
Hence, Netondo et al. [36] attributed the decrease in leaf 
area under stress to early leaf senescence and death, 
reduced growth rate or delayed emergence. They also 
concluded that the reduction in leaf area could be 
considered as one of the major reasons for lowered 
carbon gain and growth under stress conditions. 
Moreover, plant tried to cope with the water stress by 
reducing its leaf area in order to allow the conservation of 

energy, minimize the deleterious effects of water deficit 
alkalinity and to complete their life cycle under stress 
conditions (i.e. avoidance and/or tolerance mechanisms).  
 
In the present study, the cumulative degree of leaf 
succulence also decreased under stress conditions (Figure 
1). These results agree with those obtained by Welch & 
Rieseberg [37,38] working with three varieties of 
sunflower plants. Therefore, greater leaf succulence can 
be recorded as a means of increasing stress tolerance 
Welch & Rieseberg [37,38]. On contrary to the trend 
recorded for the degree of leaf succulence, the cumulative 
degree of leaf sclerophylly was found to increase under 
stress conditions (Figure 1). In accordance with these 
results, leaf sclerophylly was found to increase by 
stressing wheat plants [33]. 
  
The current work showed that the enhancement in leaf 
growth was more pronounced showing beneficial effects 
of Si on alkalinity stressed sorghum plants. Si application 
ameliorated the adverse effects of alkalinity by increasing 
flag leaf area. This indicated that Si application enhanced 
the crop growth not only under alkalinity but also under 
non alkaline conditions. These results are supported by 
Gong et al. [39], who observed the similar results in barely 
crop. The possible mechanisms responsible for better 
crop growth in the presence of Si under stressful 
conditions might be the prevention of loss of water from 
aerial parts of plant by keeping the water status 
maintained by the plant [40].  
 
The improvement of degree of leaf succulence in stressed 
maize plants observed under Si treatment was perhaps 
due to the deposition of Si as silicate crystals in epidermal 
tissues, which composes a barrier to water transpiration 
through the cuticles and stomata [41] resulting in higher 
leaf area of maize plants as recorded in Si-primed plants 
under non-stressed and alkaline stress conditions (Figure 
1). Furthermore, Si pre-treatment as seed-priming 
improved other growth parameters of alkaline- stressed 
maize seedlings (Figure 1). Thus, the results of this study 
and previously published reports collectively indicate the 
protecting role of Si against a wide range of 
environmental pressures [42].  
 
Cell membrane is one of the main cellular targets common 
to different stress conditions [43]. In this regard, lipid 
peroxidation, membrane stability index (MSI) and 
membrane leakage (ML) could be considered as widely 
used stress indicators of plant membranes. In the present 
study, alkalinity stress conditions caused significant 
increase in lipid peroxidation and ML with marked 
decrease in MSI of sorghum plants (Figure 2). These 
results are in agreement with those obtained by Fayyaz 
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[44] who demonstrated that the amount of electrolyte 
leakage from the leaves of poplar plants was increased 
under water stress conditions. It is well known that water 
stress enhances free radical production, which induces 
the lipid peroxidation of bio-membranes, reflecting the 
stress-induced damage in tissues [45]. Evidence suggests 
that membranes are the primary sites of injury to cells 
and organelles because ROS can react with unsaturated 
fatty acids to cause peroxidation of essential membrane 
lipids in plasma lemma or intracellular organelles leading 
to leakage of cellular contents, rapid desiccation and cell 
death [46].  
 
In the present study, lipid peroxidation was estimated as 
malondialdehyde (MAD) content which is one of the 
decomposition products of polyunsaturated fatty acids 
(PUFA) of biomembranes [47]. Under alkaline regimes, 
MDA content accumulated in maize plants (Figure 2), 
clearly suggesting ROS burst and prospective oxidative 
damage to plant cells. This result is supported by the 
study of Ahmad et al. who found an increase in MDA 
content in two mulberry (Morus alba L.) cultivars with 
increase in exogenous NaHCO3 level. Thus, the increase in 
MDA content might result from stomata closure causing a 
decrease in leaf CO2 concentration. This, in turn, might 
cause a decrease in the concentration of NADP+ available 
to accept electrons from PSI and/or PSII and thus initiate 
O2 reduction with the concomitant generation of ROS [48]. 
Under water stress conditions, electrolyte leakage could 
be attributed to the damage of cell membranes which 
become more permeable due to less water availability 
[49]. The data obtained by Masoumi et al. [50] also 
indicated water stress-induced membrane injury, 
indicated by higher membrane leakage in Borujerd Kochia 
plants.  
 
Exogenous application of Si in growth medium reduces 
electrolyte leakage in salt-stressed plants by maintaining 
the integrity and functions of membrane, thus mitigating 
salt toxicity [51]. The present study showed that addition 
of Na-silicate decreased electrolyte leakage under saline 
condition in both cultivars in comparison to control. This 
ameliorative effect of Si may be due to its hydrophilic 
nature by maintaining plant water status and by 
protecting the plants from physiological drought [52]. On 
the other hand, treatment with Si significantly hampered 
MDA accumulation in stressed maize plants compared 
with that of control and alkaline- treated alone plants 
(Figure 2), suggesting that Si triggers mechanisms to 
mitigate oxidative damage in stressed plants.  
 
Alkalinity not only imposes the osmotic stress, but also 
marked as an oxidative stress which can stimulate 
accumulation of reactive oxygen species (ROS).  

 
Hence, ROS levels in cells need to be tightly regulated via 
ROS-scavenging. Plants scavenge ROS by various 
protective mechanisms such as enzymatic antioxidant and 
non-enzymatic antioxidant. The antioxidant defense 
machinery that protects plants against oxidative stress 
damages includes both enzymatic and non-enzymatic 
antioxidant defense systems that work in concert to 
control the cascades of uncontrolled oxidation and protect 
the cells from oxidative damage by scavenging the ROS 
[53]. The results presented in Figure 3 revealed that 
alkalinity stress induced marked increase (p ≤ 0.05) in 
AAO, POD and PAL activities and induced a non- 
significant reduction in PPO activity in flag leaves of both 
sorghum cultivars during grain-filling comparing with the 
control plants. Among cultivars, tolerant one showed 
higher enzymes activity than sensitive one. Similar 
responses to stress conditions were reported in maize 
[54]. Ascorbic acid is considered as the most abundant, 
powerful and water soluble antioxidant that helps to 
reduce the oxidative damages caused by ROS in plants 
[53]. Changes of ascorbic acid or oxidized ascorbic acid 
under drought stress are a part of antioxidant defense 
mechanism of plants [55,56]. In addition, POD is one of 
the major systems for the enzymatic removal of H2O2 in 
plants [57].  
 
Our results suggested that Si triggers mechanisms to 
mitigate oxidative damage in stressed plants. Indeed, Si 
pre-treatment significantly increased the content of 
antioxidant phenols in sorghum plants plants under 
alkaline stress (Figure 4). Furthermore, seed-priming 
with Si also resulted in a significant increase in catalase, 
ascorbic acid oxidase (AAO) and peroxidase (POD) 
activities in stressed sorghum plants relative to plants 
treated with alkalinity alone. These results indicate that Si 
enhances antioxidant system to protect plants against 
alkalinity-induced oxidative damage, as evidenced by the 
observed reduced MDA level. Moreover, Si moderately 
offsets the negative effects of salt stress by enhancing SOD 
and CAT activities and soluble proteins in tomato [58]. Si 
application in sorghum excited the scavenging system and 
promoted the production of SOD and CAT in both 
cultivars.  
 

Conclusion  

We could suggested that addition of Si improved plant 
defense system to detoxify ROS induced under alkalinity 
stress, which in turn helped to increase leaf growth, 
improve membrane characteristics and enhanced the 
antioxidant capacity efficiency. It is also confirmed that 
scavenging system is primary defense line against 
oxidative stress induced by alkalinity stress.  
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