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s-Methods 

Multiple Correspondence Analysis (MCA)  

Multiple correspondence analyses are a generalization of 
correspondence analysis. It is a multivariate technique 
used when there are more than two categorical variables, 
with the purpose to study the association between the 
different categories (e.g. male and female for the variable 
Sex) of all the variables involved in the study to identify 
individuals with similar profiles (i.e. with the highest 
number of common categories). The final outcome is a 
plot that shows the relationships among categories, 
among subjects and among categories and subjects in a 
two-dimensional space in order to display the geometric 
configuration of the variable categories. Categories that 
are in the same quadrant or that are close enough suggest 
an association [1]. Substantially, the aim of the MCA is to 
obtain a measure of the association in terms of geometric 
distance so that associated categories are closely 
displayed in the output plot. The geometric distances are 
based on the definition of row and column profiles 
provided below.  
 

 Variables  

 Sex 
Alcohol 
abuse 

… 
Qth 

variable 
 

Total 

Subjects Male Female Yes No … 𝐽−1 J 
1 0 1 1 0 … 0 1 Q 
2 0 1 0 1 … 1 0 Q 
… … … … … … … … Q 

i 1 0 0 1 … 1 0 Q 
… … … … … … … … Q 
I 1 0 1 0 … 1 0 Q 

Total Z+1 Z+2 Z+3 Z+4  Z+J-1 Z+J Z++ 

Table 1: Multiple correspondence analysis. 
 
In details, based on the following data table of I subjects, Q 
categorical variables and 𝐽 categories (𝐽𝑞 for each 
variable, Σ𝐽𝑞𝑄𝑞=1=𝐽), it is possible to define the following 
quantities:  
- 𝑟𝑖𝑗={0 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 𝑕𝑎𝑠 𝑛𝑜𝑡 𝑡𝑕𝑒 𝑗𝑡𝑕 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1𝑄 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 
𝑖 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡𝑕𝑒 𝑗𝑡𝑕 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 with Σ𝑟𝑖𝑗𝐼𝑖=1=1 and j=1,…,J  
- 𝑟𝑖=(𝑟𝑖1,𝑟𝑖2,…,𝑟𝑖𝑗,…,𝑟𝑖𝐽)′ row profile and  
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- 𝑐𝑖𝑗={0 𝑖𝑓 𝑡𝑕𝑒 𝑗𝑡𝑕𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑕𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑐𝑕𝑜𝑠𝑒𝑛 𝑏𝑦 𝑡𝑕𝑒 
𝑖𝑡𝑕𝑠𝑢𝑏𝑗𝑒𝑐𝑡1/𝑧+𝑗 𝑖𝑓 𝑡𝑕𝑒 𝑗𝑡𝑕𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑕𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐𝑕𝑜𝑠𝑒𝑛 𝑏𝑦 
𝑡𝑕𝑒 𝑖𝑡𝑕𝑠𝑢𝑏𝑗𝑒𝑐𝑡 - column profile 𝑐𝑗=(𝑐1𝑗,𝑐2𝑗,…,𝑐𝑖𝑗,…,𝑐𝐼𝑗)′.  
 
Since MCA involves individuals and variable, two kind of 
distances can be evaluated (between row profiles, i.e. 
between individuals, and between column profiles, i.e. 
between categories of variables):  
 
a. The distance between two row profiles 𝑟𝑖 
𝑎𝑛𝑑 𝑟𝑖′ of two different subjects is defined as:  
𝑑𝐷2(𝑟𝑖,𝑟𝑖′)=Σ(𝑟𝑖𝑗−𝑟𝑖′𝑗)2𝑟𝑗̅𝐽𝑗=1=𝐼𝑄Σ(𝑟𝑖𝑗−𝑟𝑖′𝑗)2𝑧+𝑗 𝐽𝑗=1.  
This distance will be equal to zero if the individuals have 
the same categories and it will increase when the number 
of distinct categories presented by the two subjects 
increases.  
 
b. In a similar way the distance between two 
column profiles 𝑐𝑖𝑗−𝑐𝑖𝑗′ is defined as follows:  
𝑑𝐷2(𝑐𝑗,𝑐𝑗′)=Σ(𝑐𝑖𝑗−𝑐𝑖𝑗′)2𝑐𝑖̅𝐼𝑖=1=𝐼Σ(𝑐𝑖𝑗−𝑐𝑖𝑗′)2 𝐼𝑖=1 
Consequently, the profiles of the two categories 𝑗 and 𝑗′ 
will be the same when these are shown by the same 
subjects and the distance will increase with the number of 
individuals that show different categories. These 
distances will be displayed in a common unique plot 
(named Biplot) [2] such that the distance between any 
row profile or column profile gives the measure of their 
similarity (or dissimilarity).  
 

Cluster Analysis  

Cluster analysis is a multivariate technique used when all 
the variables of interest are continuous. It allows to 
aggregate n subjects in different groups, named clusters, 
on the basis of their individual data. The main goal is to 
find an optimal grouping so that the observations within 
the same cluster are similar (minimizing distance within 
clusters) and dissimilar from the observations in the 
other clusters (maximizing distance between clusters) [1].  
 
There exist two main approaches of clustering: hierarchical 
and non-hierarchical: 
The first approach is a “data-driven” process that may be 
aggregative (if it starts from n different clusters, one for 
each subject, and ends with only one: a single cluster 
containing all the observations) or divisive (if it does the 
opposite: starting from an unique group and ending with 
n different groups) [1]. On the contrary, the non-
hierarchical approach may be defined “hypothesis-driven” 
since the number of clusters is defined a priori by the 
researcher. Among these two approaches there are 
different techniques that can be applied. In this paper we 
present the Ward’s method (hierarchical aggregative, 
known also as incremental sum of squares method) and the 

k-means (non-hierarchical). Ward’s method uses the 
within and between clusters squared distances: the two 
clusters that minimize the increase in the sum of squared 
errors (i.e. minimize the between-cluster distance) are 
melted together. The k-means method is based on the 
number of clusters, fixed a priori, and on the distances of 
each subject from the cluster means’ vector (centroids). It 
is an iterative procedure that allows subjects reallocation 
in different clusters (not possible with hierarchical 
methods) and it ends when no subject is reallocated.  
 
The main aim of cluster analysis is to identify the 
observations (subjects) that are similar and to group 
them into clusters. A numerical measure that is generally 
used to evaluate proximity between subjects (and so if 
two observations are similar or not) is the distance. One 
of the most used distances is the Euclidean one defined as:  
𝑑(𝑥𝑟,𝑥𝑠)=[(𝑥𝑟−𝑥𝑠)′(𝑥𝑟−𝑥𝑠)]1/2=[Σ(𝑥𝑟𝑗−𝑥𝑠𝑗)2𝑝𝑗=1]1/2  
Where p is the number of variables, 𝑥𝑟, are the p-
dimensional observation vectors for the subjects r and s 
and 𝑥𝑟𝑗 and 𝑥𝑠𝑗 are the values of the jth variable for the 
subjects r and s.  
Each cluster is specified by its centroid, i.e. the cluster 
mean vector: 𝐶𝐺=(𝑋𝐺1̅̅̅̅

̅
,𝑋𝐺2̅̅̅̅

̅
,… ,𝑋𝐺𝑝̅̅̅̅

̅
 ) 

Where 𝑋𝐺𝑖 ̅̅̅̅ is the mean of the ith variable in cluster G, 
with 1≤𝑖≤𝑝.  
The algorithms of the two (hierarchical and non-
hierarchical) approaches, with a particular attention to 
the specific methods used in the manuscript (Ward’s 
method and k-means) are reported below.  
 
 
Hierarchical approach Preliminar steps: 
a. Choice of the dissimilarity measure of the clustering 

method. 
b. Calculation of the dissimilarity between each pair of 

subjects or clusters. 
 
After the preliminary steps, an agglomerative or a divisive 
algorithm is chosen. Here only the agglomerative one is 
presented (since it is the one used in the paper analysis. 
 
Hierarchical agglomerative clustering algorithm:  
a. Start with n clusters, one for each object;  
b. The two most similar clusters are searched and are 

melt into a new cluster;  
c.  Evaluation of similarity (or dissimilarity) between the 

new clusters and other clusters;  
d. Repeat until you have only one cluster with n objects.  
 
A possible choice for the measuring the similarity 
between clusters is given by the Ward’s method that 
minimizes the sum of the squared distances of points 
from their cluster mean vector (centroid). In details, it 

http://chembiopublishers.com/OAJBSP/
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uses the within and between-clusters distances and join 
the two clusters A (of size 𝑛𝐴) and B (of size 𝑛𝐵) that 
minimize the increase 𝐼𝐴𝐵 in the sum of squared errors 
(SSE): 𝐼𝐴𝐵=𝑆𝑆𝐸𝐴𝐵−(𝑆𝑆𝐸𝐴+𝑆𝑆𝐸𝐵) where 
𝑆𝑆𝐸𝐴=Σ(𝑦𝑖−𝑦𝐴̅̅̅)′(𝑦𝑖−𝑦𝐴̅̅̅)𝑛𝐴𝑖=1, 
SS𝐸𝐵=Σ(𝑦𝑖−𝑦𝐵̅̅̅)′(𝑦𝑖−𝑦𝐵̅̅̅)𝑛𝐵𝑖=1 and 
𝑆𝑆𝐸𝐴𝐵=Σ(𝑦𝑖−𝑦𝐴𝐵̅̅̅̅

̅
)′(𝑦𝑖−𝑦𝐴𝐵̅̅̅̅

̅
)𝑛𝐴𝐵𝑖=1; with 𝑦𝐴̅̅̅,𝑦𝐵̅̅̅ 𝑎𝑛𝑑 

𝑦𝐴𝐵̅̅̅̅
̅
 being the mean vectors of cluster A, B and the new 

joint cluster AB. [1]  
 
The result of the hierarchical approach is displayed in a 
plot called dendrogram: a tree diagram representing all 
the procedure steps including the distances at which 
clusters are joined. The leaves of the tree represent the 
subjects while the y-axis (height of the dendrogram) is 
simply the value of the distance metric between clusters. 
The number of clusters is defined by cutting (through a 
horizontal line) the dendrogram at a specific height.  
 
Non-hierarchical approach K-means algorithm:  
a. Choice of the dissimilarity measure. 
b. Choice of the number of clusters. 
c. First random partition of the objects in the k clusters. 
d. Calculation of the k centroids. 
e. Evaluation of the distances between each object and 

each centroid. 
f. Reallocation of every object in the cluster with the 

nearest centroid 
g. If at least one object has been moved, go back to point 

4; else go to point 8. 
h. Stop.  
 

Principal Component Analysis (PCA)  

Principal component analysis is a data-reduction 
technique that can be used to reduce a large set of 
correlated continuous variables 𝑋=(𝑋1,𝑋2,…,𝑋𝑝) into a 
smaller set of uncorrelated ones, i.e. the principal 
components 𝑃𝐶𝑗,𝑗<𝑝, that still contain most of the 
information of the original set of variables. This technique 
is based on a constrained optimization problem that aims 
to find a linear combination of variables that maximizes 
the amount of data variability explained. Each PC is 
derived in decreasing order for the amount of data 
variability explained (therefore the first one has the 
highest amount of explained variance). The main aim of 
PCA is to find a reduced number of linear combinations of 
the observed variables which explain most of the variance 
in the data [3].  
 
Let’s suppose to have 𝑋=(𝑋1,𝑋2,…,𝑋𝑝), a p-dimensional 
vector of continuous variables with mean μ and 
covariance matrix Σ. The jth principal component is 
defined as a linear combination of the variables:  

𝑃𝐶𝑗=𝑎𝑗1𝑋1+𝑎𝑗2𝑋2 +⋯+𝑎𝑗𝑝𝑋𝑝=𝑎𝑗′𝑋,  
Where 𝑎𝑗=(𝑎𝑗1,…,𝑎𝑗𝑝) is a p-dimensional vector of 
loadings.  
 
The purpose is to find the loading vector 𝑎𝑗 that 
maximizes the variance of the linear combination 
(𝑃𝐶𝑗)=𝑎𝑗′𝛴𝑎𝑗 under the constraint that 𝑎𝑗′𝑎𝑗=1, i.e. to 
solve the following constrained maximum problem  
{max𝑎 𝑎𝑗′𝛴𝑎𝑗 𝑎𝑗′𝑎𝑗=1𝑎𝑗′𝑎𝑗−1=𝑎𝑗−1′𝑎𝑗=0 with 𝑗=2,…, (for 
𝑗=1 the second constraint disappear) by using Lagrange 
multipliers method [4]. The Constrains ensure 
orthogonality among the PCs.  
 
A good way to represent graphically PCA results is the 
biplot that shows simultaneously the variables 
(represented by arrows) and the subjects (represented by 
points) on a two (or three) axes plot. The axes are given 
by the first two (or three) PCs. The accuracy of the 
representation is proportional to the total variance 
extracted by the depicted components [5]. As in the MCA 
plot, also for the PCA the association is detected in terms 
of geometrical distance, so that the variables (arrows) are 
associated to the closer subject’s subgroup.  
 

Partial Least Square Discriminant Analysis 
(PLS-DA)  

Partial Least Square Discriminant Analysis is a 
classification technique that combines a Partial Least 
Square Regression (PLS-R) and Linear Discriminant 
Analysis (LDA); in particular, the PLS-DA is a PLS-R in 
which the dependent variable is categorical. PLS-R is a 
method that at the same time allows dimension reduction 
and the fit of a regression model. It is an approach similar 
to PCA but, instead of a computation of a new variable 
(the principal component), a categorical response 
variable is used [6]. LDA is a method whose purpose is to 
find a linear combination that allows discriminating two 
or more groups maximizing their separation. 
 
Therefore, PLS-DA provides a dimension reduction in a 
discriminant application maximizing among-groups 
variability [7]. Formally, PLS-R is based on a regression 
model between the data matrix 𝑋 and the vector of 
categories (the group variable) 𝑐. The fundamental 
equations of PLS-DA are the following: 𝑋=𝑇𝑃+𝐸 𝑐=𝑇𝑞+𝑓 
where 𝑇 is the score matrix, 𝐸 and 𝑓 are the residuals and 
𝑃 and 𝑞 are respectively the loadings of 𝑋 and of 𝑐 (for 
more details see [8]).  
 
Once the model is built the class membership can be 
predicted through the equation  
𝑐̂=𝑥𝛽, where 𝛽 is the regression coefficient vector.  

http://chembiopublishers.com/OAJBSP/
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Therefore, a generic subject will be classified i.e. assigned 
to a category on the basis of the estimated value of c (and 
it will be assigned to the category with the nearest value). 
The main advantage of PLS-DA, compared to linear 
discriminant analysis, is that it can provide also variables 
loadings (represented by a bar plot) that allow to identify 
not only the group a subject belongs to, but also which 
variables are more helpful to discriminate the subjects in 
the different classes [8].  
 

Classification Trees (CART)  

Classification trees are one of the most popular machine 
learning algorithms that belong to the family of decision 
trees, that can be used for both classification and 
regression purpose. CART are models in which the 
dependent variable (variable that has to be predicted) is 
categorical and the independent ones (covariates) can be 
categorical or quantitative. Classification trees are 
directed graphs in which there is an initial node that 
branches too many. Each node represents an independent 
variable, each edge corresponds to a decision rule and 
each leaf represents an outcome (a value of the predicted 
variable). The top node contains the entire sample that is 
consequently divided into different subsets. If the 
covariates are quantitative splits are created on the basis 
of some cut-offs on a scale; if the covariates are 
categorical, splits are based on the different categories 
[9]. After computing the entire tree (with all the 
independent variables) some techniques have to be used 
to reduce tree dimension and to improve the tree 
predictive power, reducing over fitting. Among these, one 
of the most used is pruning [10], a method that allows to 
remove the variables that do not contribute (are not 
significantly associated) to the final outcome, considering 
a penalty for the increase of parameters in the model]. 
 
Therefore, the final tree shows only the independent 
variables that are significant predictors of the dependent 
one (outcome) and, differently from the traditional 
regression models, those that are not predictors do not 
influence the final result. The classification trees can be 
built by a recursive partitioning program using a two-
stage procedure [11]. 
a. The variable which best splits the data into groups (i.e. 

with the greatest association with the dependent 
variable) is found. The subjects are divided and this 
process is repeated separately to each subject 
subgroup recursively until the subgroups either reach a 
minimum size or until no improvement (in terms of 
predictive performance) can be made. 

b. A cross-validation (pruning) will be performed to trim 
the full tree, since the full model is quite certainly too 
complex and over fitted.  

 

s-Code 

Multiple Correspondence Analysis 

> data<- read.csv ("file.csv", sep=";", header=T) # read the 
data  
> data_mca<-data [ , c(a, b, c,…)] #It takes all the rows of 
data and the columns a, b, c,… that are the columns of the 
categorical variables you want to analyze. Be careful: 
data_mca has to contain only categorical variables.  
> library (FactoMineR) #If you don’t have this package, 
install it with install.packages(“FactoMineR”) . 
> mcadat<-MCA(data_mca, graph=F, na.method = 
“Average”) #It performs a Multiple Correspondence 
Analysis. 
> cats <- apply(data_mca, 2, function(x) 
nlevels(as.factor(x)))  
> mca_vars_df <- data.frame(mcadat$var$coord, Variable 
= rep(names(cats), cats))  
> mca_obs_df <- data.frame(mcadat$ind$coord)  
#To display the MCA results you can use ggplot function 
(of the library ggplot2) applied to the mcadat object.  
library(ggplot2) #If you don’t have this package install it 
with install.packages(“ggplot2”)  
> ggplot(data = mca_obs_df, aes(x = Dim.1, y = Dim.2)) + 
geom_hline (yintercept = 0, colour = "gray70") +  
geom_vline (xintercept = 0, colour = "gray70") + 
geom_point (colour = "gray50", alpha = 0.7,size=4) +  
geom_text (data = mca_vars_df, aes(x = Dim.1, y = Dim.2, 
label = rownames(mca_vars_df), colour = Variable), 
size=5.5) + ggtitle ("MCA plot - Variables and Subjects") + 
scale_colour_discrete (name = "Variables") + 
theme(plot.title=element_text (size=20,face="bold"), 
legend.text=element_text (size=15), legend. 
title=element_text (size=17), axis.title=element_text 
(size=15), axis.line=element_line (size=1, colour=  
"black"), panel.grid.major=element_line (colour = 
"#d3d3d3"), panel.grid.minor=element_blank (), 
panel.border= element_blank (), panel.background = 
element_blank ()). 
 

Cluster Analysis  

> data_clus<-data [ , c(a,b,c,…)] #data_clus must contain 
only continuous variables and the group variable (in  
our case, diagnosis) and must not contain missing values.  
> data_clus<-as.matrix (data_clus). 
 
#Hierarchical approach – Ward’s method: 

http://chembiopublishers.com/OAJBSP/
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> hc=hclust (dist (data_clus[ ,-1]), method=”ward.D”) #it 
performs hierarchical clustering. The object data_clus [ , -
1] is a matrix containing only continuous variables (i.e. 
the group variable in the first column has been excluded)  
> dhc=as.dendrogram(hc)  
 
#To assign the labels of dendrogram object with new 
colors:  
> data_clus$Group[which(data_clus$Group==1)]<-“A” 
#(In our case A and B are BPD and BD patients)  
> data_clus$Group[which(data_clus$Group ==2)]<-“B”  
> colorCodes<- c(A=”red”, B=”blue”)  
> library(dendextend) #If you don’t have this package, 
install it with install.packages(“dendextend”)  
> labels_colors(dhc)<-
colorCodes[data_clus$Group][order.dendrogram(dhc)]  
> plot (dhc, main=”Hierarchical clustering approach – 
Ward’s method”, ylab=”Height”, size= 2)  
> legend (“topright”, legend = c(“A” , “B”), col = c(“red”, 
“blue”), pch = c(20,20,4,4,4), bty = “n”, pt.cex = 1.5, cex = 
0.8, text.col = “black”, horiz = FALSE, inset = c(0.1, 0.1)). 
  
#Non hierarchical approach- k-means method: 
> library(cluster)  #If you don’t have this package, install 
it with install.packages(“cluster”)  
> set.seed (123)   #It fixes the seed of the 
random number generator in order to have reproducible 
results.  
> clus <- kmeans(data_clus[.-1], 2, iter.max = 50)  
 #It performs k-means method  
> clus$centers     #It provides 
clusters centroids (variables mean in each cluster)  
> clus$size #It provides clusters size (number of subjects 
in each cluster)  
> table (clus$cluster, data_clus$Group)  #It provides a 
frequency table in which rows represent cluster allocation 
and columns represent the group categories  
 
#To plot the results:  
>clusplot (data_clus, clus$cluster, color=T, shade=F, 
labels=5, lines=2, col.p=as.character(data_clus$Group), 
col.clus = c(“red”, “blue”), main=”Non-hierarchical 
clustering approach – k-means method”)  
> legend (“topleft”, bty = “n”, legend=c(“Cluster 1”, 
“Cluster 2”), pch=c(1,2), cex=0.8). 
 

Principal Component Analysis  

> pca<-prcomp (data_clus[ , -1], center=T, scale=T) #It 
performs a principal component analysis. 
 
#To plot the results of PCA:  
> Library (pca3d) #If you don’t have this package install it 
with install.packages (“pca3d”)  

> Library (rgl) #If you don’t have this package install it 
with install.packages (“rgl”)  
>pca3d (pca, group=as.factor (data_clus$Group), 
biplot=TRUE, biplot.vars=3, show.ellipses=F, palette=c 
(“red, “blue”))  
> legend3d (“right”, legend=c(“A”,”B”),pch=c(17,19), 
col=c(“red, “blue”), cex=1.5). 
 

Partial Least Squares Discriminant Analysis 

> library(mixOmics) #If you don’t have this package, 
install it with install.packages(“mixOmics”)  
> dis= splsda(data_clus[,-1], data_clus$Group, ncomp = 3)  
> plotLoadings (dis, comp = 1, method = ‘median’, 
size.name=1.5, legend.title=”Group”, legend.color=  
c(“red”, “blue”), size.legend=1.2, contrib=’max’, xlim=c(-
0.6,0.6), title=”Loading vectors – PLS-DA”). 
 

Classification Trees 

> Library (rpart) #If you don’t have this package, install it 
with install.packages (“rpart”)  
> Library (rpart.plot) #If you don’t have this package, 
install it with install.packages (“rpart.plot”)  
> Tree=rpart(Group~V1+V2+… +Vj, method =”class”, 
data=data) #V1, V2, …, Vj are the names of the 
independent variables; Group is the dependent one.  
> rpart.plot(tree, extra=4, type=5, box.palette=c(“red”, 
“blue”), main=”Decision tree”). 
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