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Abstract

Ursolic acid, it is a pentacyclic triterpene abundantly present in various medicinal plants, has garnered extensive attention for 
its multifaceted bioactive properties. It is widely distributed in fruits, leaves, herbs, and flowers. It has demonstrated significant 
therapeutic potential against diverse ailments, including cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and 
liver injuries. This review focuses on ursolic acid’s structural attributes, natural sources, biosynthesis, and pharmacological 
effects, particularly emphasizing its hepatoprotective and cardio protective mechanisms. Most studies have explored ursolic 
acid’s impacts on peroxisome proliferator activated receptors, liver X receptor, farnesoid X receptor, and pregnane X receptor, 
revealing potent anti-inflammatory, anti-hyperlipidemic, anti-cancer, cardio protective and hepato protective attributes. In vitro 
and in vivo investigations highlight ursolic acid’s efficacy in reducing accumulation of lipids in hepatic cells, mitigation of non-
alcoholic steatohepatitis, and preventing the progression of liver fibrosis. This comprehensive review provides valuable insights 
into ursolic acid’s diverse therapeutic applications, underscoring its potential as a promising natural compound for combating 
a spectrum of health challenges.
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Introduction

Ursolic acid (UA) has many different pharmacological 
properties. But in this review cardio protective and 
hepatoprotective nature has been discussed here. UA itself 
has antioxidant and anti-inflammatory property [1]. It shows 
the effect on liver and heart mostly with these effects. It acts 
as Peroxisome proliferator activated receptor α (PPAR- α) 
agonist to alleviate the liver disorders and inhibits nuclear 
factor kappa-light-chain-enhancer of activated B cells (Nfκb/
Akt) mediated pathway [2]. It shows the effect on heart by 
its antioxidant effects [3]. Due to oxidative stress myocardial 
infarction occurs, but UA prevents the DNA damage in heart. 
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It protects heart by another mechanisms, it has vasorelaxant 
property as well. It has endogenous nitric oxide (NO) 
relaxant property via stimulation of endothelial nitric oxide 
synthase (eNOS) which is important for hypertension and 
atherosclerosis [4].

Ursolic Acid
This is 3b-hydroxy-12-urs-12-ene-28-oic acid (Figure 1) a 
naturally occurring pentacyclic triterpenoid carboxylic acid; 
is the main ingredient in many traditional medicinal herbs 
[5]. It is well known to have various of biological properties, 
which includes protection against inflammation, tumor, 
and having antioxidant properties that can counteract both 
endogenous and exogenous biological stimuli [6].
 
The pentacyclic triterpenoids (PCTs) are a class of C30 
isoprenoid compounds that are widely distributed in 
plants. They are produced biosynthetically by the help of 
folding and cyclization of squalene ring, by which it results 
in the dammarenyl ring system. This ring structure and 
stereochemistry differ slightly from that of major sterols. UA 
is found in a wide range of plants as an aglycone of triterpene 
saponins or as a free acid [7]. Triterpenoids are generated 
by the action of mevalonic acid and consist of six isoprene 
molecules [8].

They are frequently connected to polysaccharide gums 
and can be found in plant resin, cork, and waxy coatings. 
Triterpenoids, also referred to as saponins, are substances 
that either exist naturally unchanged or are modified by 
glycosylation. Non-glycosylated triterpenoids produce 
a lipophilic membrane that acts as a barrier to keep out 
water from leaves, stems, and fruits [9]. PCTs are the most 
prevalent and extensively dispersed type of triterpenoids. 
Four fundamental ring skeletons are used to classify PCTs: 
ursane, oleanane, friedelane, and lupine. In lupine , there 
are four six-member rings and one five-member rings, in 
olenane there are five six- members rings with two methyl 
groups each, in ursane there are five six-member rings with 
one methyl group each. UA, asiatic acid (AA, ursane group), 
oleanolic acid (OA), β-amyrin (oleanane group), and betulin 
(lupine group) are the terpenoids that have been studied the 
most [9,10].

Figure 1: Ursolic Acid Structure.

Structural Property
UA (3β-3-hydroxy-urs-12-ene-28-oic acid) is a PCT, having 
the chemical formula C3OH48O3 and a molecular mass of 
456.71 g/mol. UA completely dissolves in alcoholic sodium 
hydroxide and glacial acetic acid [7], but it doesn’t dissolve 
in water. It is typically produced by folding and cyclizing 
squalene, which lengthens the UA’s fifth ring and adds another 
ring. This process starts with the dammarenyl cation. The 
three oxygen atoms in the molecule activate double or triple 
neutral ligands and donate electron pairs to the transition 
metal atom [12,13].

Natural sources of URSOLIC Acid
Triterpenes can be extracted from a variety of therapeutic 
plants; the Lamiaceae family is one of the most well-
known sources, as leaves of Rosmarinus officinalis, a classic 
commercial source [14]. Additionally, UA has been found in 
a number of sources, namely in and in certain commercially 
dried fruits, leaves, and flowers. It has recently been discovered 
that wild edible mushrooms contain the triterpenic acids 
ursolic and oleanolic for the first time [15]. Triterpenoids 
found in cuticular waxes provide a protective effect against 
biotic stressors including infections and herbivores on the 
mechanical qualities of the fruit surface. These compounds 
are also partially responsible for the allelopathic potential of 
fruits. The main triterpene found in argan fruit and leaves is 
ursolic acid, which is produced as a byproduct of the argan 
oil industry [16]. It can be found in waste products like those 
used to make juice, apple peels, the leftovers from processing 
apples or persimmons, especially peels, unripe and overripe 
fruits that are harvested, like elderberries, and raffinates, 
like leftover rosemary that is used to extract carnosic acid. 
Another source might be forestry wastes, such as Eucalyptus 
sp. bark.

Numerous berries have been shown to contain UA and related 
PCTs, including Vaccinium macrocarpon (cranberries) and 
other Vaccinium species [17]. The fruit peel of the apple 
(Malus domestica) [18] the leaves of the thyme (Thymus 
vulgaris) [19], the bark and leaves of Eucalyptus, the leaves 
and barks of Sambucus nigra, the leaves of Origanum vulgare, 
the leaves of rosemary (Rosmarinus officinalis) [20], the leaves 
and flowers of hawthorn (Crataegus sp.) [21], the leaves and 
flowers of marjoram (Origanum majorana), the leaves and 
flowers of lavender (Lavandula angustifolia) [22], the leaves 
of coffee (Coffea arabica), the leaves of sage (Salvia officinalis), 
and the wax layer of a variety of edible fruits are also known to 
contain UA in relatively high concentration [23,24].

Different Natural Sources with their Parts
As previously indicated, UA may be obtained from a variety 
of natural sources by employing various extraction methods 
and shown in Table 1.
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Natural Sources Part of the Plant Scientific Name Method of Extraction and Solvents References

Apple Peels Malus domestica
Ultrasonic cleaner with hydrophobic 

deep eutectic solvents (Menthol: 
Thymol) (1: 1)

Li, et al. [25]

Eucalyptus Bark Teriticornis 
globulus

Soxhlet extraction with 
dichloromethane. Solid liquid 

extraction with natural deep eutectic 
solvents (NADES) (Menthol: Thymol) 

(1:2)

Silva, et al. [26]

Argan Fruits Argania spinosa Maceration with absolute ethanol. Khallouki, et al. [16] 

Thyme Leaves Thymus vulgaris

A series of chromatographic and 
extraction procedures using ethanol, 

n-hexane, ethyl acetate, n-butanol, and 
distilled water.

Shimada, et al. [27]

Rosemary Leaves Rosemary 
officinalis

Ultrasonic extraction with 90% 
ethanol at material/solvent ratio 1:15. Bernatoniene, et al. [28]

Tulsi Leaves Ocimum sanctum

Methanol, acetonitrile, acetone, and 
ethyl acetate are used in a batch 

extraction process. (1:120, solid to 
solvent ratio).

Vetal, et al. [29]

Table 1: The Natural Sources of UA and its Method of Extraction from them.

Biosynthesis of UA
Huge concentrations of UA and similar triterpene 
compounds, such as α and β-amyrin, betulinic acid, uvaol, and 
oleanolic acid, are found in plants. Because the enzymes that 
are responsible for their formation are present and active 
in different species, their amount and composition vary 
[24]. Fruit peels from apples (Malus domestica), marjoram 
(Origanum majorana), oregano (Origanum vulgare), 
rosemary (Rosmarinus officinalis), sage (Salvia officinalis), 
thyme (Thymus vulgaris), lavender (Lavandula angustifolia) 
leaves and flowers, eucalyptus (Eucalyptus teriticornis) leaves 
and bark, black elder (Sambucus nigra) leaves and flowers, 
hawthorn (Crataegus sp.) leaves and flowers, coffee (Coffea 
arabica) leaves, and the wax layer of many edible fruits are 
examples of plant matrices with a high content of ursolic 
acid [30,31]. The formation of UA along with associated 
compounds in plant tissues occurs in three stages. The 
first step involves making isopentenyl diphosphate (IPP), a 
building block with five carbons that is needed to make all 
terpenic compounds (Figure 2) [24]. It’s been long believed 
that this molecule can only be obtained by the mevalonate 
pathway (MVA). Through a six-step process, this cytosol-
carried metabolic route changes two molecules of Acetyl-
CoA (produced in the citric acid cycle) into one molecule of 

IPP [32]. A different procedure known as the deoxyxylulose/
methylerythritiol phosphate (DXP) pathway (Figure 2), has 
been identified by recent studies. By the help of pyruvate 
and glyceraldehyde-3-phosphate, IPP is produced in this 
plastid located mechanism [32]. The absence of the required 
enzymes prevents the plastid from synthesizing triterpenes 
none the less, the potential for overlap between the two 
options that are offered is taken into account [33].

The process of synthesising 2, 3-oxidosqualene and cyclizing 
it to create α-amyrin is the second step in the creation of UA 
(Figure 2). Squalene is produced from IPP molecules and 
their isomer dimethylallyl diphosphate (DMAPP) by way of 
the intermediates farnesyl and geranyl pyrophosphate. Next, 
this molecule is oxidized to 2, 3-oxidosqualene by squalene 
epoxidase. Oxygen-squalene cyclases (OSCs) are a class of 
enzymes that catalyze the cyclization and reorganization of the 
terpenoid chain, resulting in the creation of several scaffolds, 
among them α-amyrin. α/β- amyrin 28-monooxygenases, 
a class of cytochrome P450 enzymes, modify α-amyrin in 
the final stage. The UA biosynthesis process ends when the 
methyl group-containing C-28 is changed into a carboxyl 
[34].
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Figure 2: Different steps of biosynthesis of UA: (A) Formation of IPP & DMAPP in plastid, (B) Formation of IPP & DMAPP in 
cytosol (DXP pathway), (C) Ultimate stage of UA formation.

Limitations of using Natural UA
 UA has a low bioavailability and is practically insoluble 
in water. Because of its limited pharmacological 
effects resulting from its low water solubility and 
difficulty penetrating biological membranes [35].  
 
According to the biopharmaceutical classification system 
(BCS), UA is a class IV pharmaceutical product [36]. The oral 

bioavailability of these medications was low due to their 
delayed disintegration and limited penetration through 
the gastrointestinal mucosa [37]. Owing to these variables, 
novel approaches namely, drug delivery technologies have 
been created in an effort to enhance this UA molecule’s 
biopharmaceutical properties. Many UA delivery methods 
have been effectively employed to date, including liposomes 
[38], niossomal gels [39], nano-emulsions [40], mesoporous 
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silica nanoparticles, solid lipid nanoparticles [41], and 
solid dispersions [42]. These preparations will modify UA’s 
pharmacokinetic characteristics. 

Pharmacological Properties of UA
Natural terpene compound UA has a variety of medicinal 

uses. It has protective effect on liver, lung, kidney, brain, 
anti-inflammatory, antitumor, antidiabetic, antimicrobial, 
antifungal, antiviral properties [5,43]. Some of them are 
shown in Table 2.

Applications Animal Model Mechanism of Action Dosage and Routes of 
Administration References

Hepatoprotective

Wistar rats, 
4-6weeks, 180–230 g 

Hepatotoxicity induced 
by carbon tetra chloride

Inhibition of microsomal 
membranes’ liquid 

peroxidation, as 
indicated by the creation 

of malondialdehyde. 
Increase in mitochondrial 

glutathione and 
corresponding reduction 
in the amount of oxidized 

glutathione. Glutamate 
oxalate transaminase is 

reduced.

Used for five days as a 
pretreatment (1, 2.5, 

and 5 mmol/kg in olive 
oil). Administered 

intragastrically.

Martin-Aragón, et al. 
[44]

Cardioprotective

Adult male albino 
rats (120-140 gm) A 

subcutaneous injection 
of isoproterenol 

hydrochloride (ISO, 85 
mg kg−1 b.w.) dissolved 
in physiological saline 
for two days in a row 
to cause myocardial 

ischemia.

It prolongs the life of the 
cardiac cell membrane 

against necrotic 
damages by acting as 

a membrane stabilizer. 
By inactivating the 

enzyme cyclooxygenase 
and seemingly directly 

scavenging superoxides 
and hydroxyl radicals, 

it lowers the amount of 
cardiac lipid peroxides. 
Reduces the activity of 
myeloperoxidase and 

inhibits the infiltration 
of neutrophils into the 
damaged myocardium.

Used for seven days 
at doses of 20, 40, 
and 60 mg kg−1 

b.w. Administered 
subcutaneously.

Senthil, et al. [45]

Nephroprotective

Wistar albino rats of 
either sex, 150– 200 
g, Gentamicin sulfate 
(dissolved in isotonic 
saline) administered 
intraperitoneally at a 

dose of 80 mg/kg/day 
caused renal damage.

Prevents lipid 
peroxidation and guards 
against damage brought 

on by free radicals. 
Suppresses the excessive 
production of nitric oxide 
(NO) and uses its strong 
antioxidant properties 

to keep intracellular 
glutathione levels stable.

Used as a medication 
(2, 5 10 mg kg 1) 

and given for three 
days both before 

and after gentamicin 
sulphate treatment. 
Administered orally.

Pai, et al. [46]
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Neuroprotective

10-week-old male 
Kunming strain mice, 
30gms. D-galactose 
(D-gal) (50 mg/kg) 

was used to produce 
neurotoxicity for eight 
weeks. The prefrontal 

cortex has significantly 
higher amounts of 
advanced glycation 

end products (AGEs), 
protein carbonyl, and 

reactive oxygen species 
(ROS) when D-gal is 
injected. This causes 

neurodegeneration and 
aging of the brain.

 In mice treated with 
D-gal, it improves 

behavioral impairment in 
the prefrontal cortex and 

reduces AGEs, reactive 
oxygen species, or and 
protein carbonyl levels. 
The mice administered 

with D-gal, the prefrontal 
cortex of them, it lowers 
the expression of CD11b, 

glial fibrillar acidic 
protein (GFAP), and 

receptor for advanced 
glycation end products 
(RAGE) and decreases 

the amount of cells which 
are activated in microglia 

(CD11b stained cell), 
active glial (GFAP-stained 

cell), along with AGEs 
coupling to its receptor 
(RAGE-positive cells).

Utilized as a treatment 
(10 mg kg-1) by oral 

gavage in distilled 
water containing 0.1 

percent Tween-80 
(dH2O/0.1% 

Tween-80) for eight 
weeks.

Lu, et al. [47]

Anti-inflammatory

Male Sprague-Dawley 
rats weighing 200–250 
grams, 6–8 weeks old. 

Cecal ligature and 
puncture (CLP) caused 
inflammation similar to 
sepsis and its associated 
significant consequence 

(acute lung damage).

Decreased ratio 
of lung wet to dry 

weight, leukocyte and 
protein infiltration, 

myeloperoxidase activity, 
and malondialdehyde 

content are all effects of 
ursolic acid. Moreover, 

UA significantly 
decreased the serum 

concentrations of 
tumor necrosis 

factor-a, interleukin-
1b, and interleukin-6. 

Additionally, it inhibited 
the lung’s expression 

of inducible nitric 
oxide synthase and 

cyclooxygenase-2, that 
take part in the process 

of creating prostaglandin 
E2 and NO.

Used as treatment 
(10 mg kg-1) 

intraperitoneally 
24 hours after Cecal 

ligature and puncture 
(CLP).

Hu, et al. [48]

Table 2: Some pharmacolological activities of UA in different animal models and their mechanism of action.

UA as Hepatoprotective
One of the body’s most vital organs is the liver. Numerous 
metabolic processes are carried out by it, including as the 
breakdown of red blood cells, synthesis of hormone and 
enzymes for digestion, storage of fat-soluble and glycoside 

vitamins, and detoxification of xenobiotics [49]. Because of 
the liver’s strategic location and diverse range of tasks, it 
can be affected by a number of illnesses, including cirrhosis, 
cholelithiasis, drug-induced liver damage, and hepatitis. 
Thankfully, the liver is the only internal body part that can 
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regenerate; it can regain its entire size from as little as 25% 
of its initial mass [24]. Good protective activity of UA was 
shown against a variety of drugs that pose a hazard to the 
liver. UA extracted from Eucalyptus tereticornis extracts was 
tested against toxicity of alcohol in hepatocytes of rats that 
are isolated [50]. They found out that this triterpene could 
reduce hepatocyte viability loss by up to 76%. Also, for the 
comparative study an in-vivo study was done with rats that 
had been given alcohol [51]. They found that UA reduced 
the levels of lipid peroxidation indicators and total bilirubin 
while raising serum protein and circulatory antioxidants. 
Biochemical measurements and histopathological 
observations correlated. Medications that cause liver 
intoxication were examined including paracetamol and 
tetrachloride respectively [44,52]. In the UA-treated 
samples, both of these articles showed improved serum 
indicators and an increase in hepatocyte viability. It had been 
examined that how UA affected metabolic disorders in mice 
and rats fed a high-fat diet [53,54]. The first group focused on 
hepatic lipid build up and found that the thiazolidinedione 
family antidiabetic drug rosiglitazone, when combined 
with UA therapy significantly decreased hepatic marker 
enzyme activity as well as hepatic lipid accumulation.  
 
In addition, the combined medication raised the fatty acid 
oxidative genes and decreased the expression of lipogenic 
genes. The latter team found that by enhancing important 
enzymes involved in lipid metabolism, UA successfully 
reduced hepatic steatosis caused by high-fat diets through a 
pathway involving PPAR-α. Hepatic PPAR-α was considerably 
reduced in the non-alcoholic fatty liver disease (NAFLD) 
state. Steatosis development has been demonstrated to be 
prevented by activating PPAR-α. In line with the in vitro 
work, which suggested UA may be a possible PPAR-α agonist, 
our investigation clearly showed that UA restored the down-
regulation of PPAR-α caused by HFD at both the mRNA and 
protein levels. 
•	 During fasting and postprandial periods, the liver 

controls the body’s glucose and lipid balance as well 
as energy metabolism. The liver is the metabolic 
centre responsible for controlling blood glucose levels. 
It releases glucose from glycogenolysis as well as 
gluconeogenesis during fasting and primarily focuses 
on glucose in relation to postprandial glycolysis and 
glycogen synthesis [55-57]. Furthermore, by converting 
extra-fatty acids into ketone bodies and storing fats and 
cholesterol from the meal to power extra hepatic cells 
including the brain and muscular tissue in the skeleton 
during fasting, the liver maintains the control of lipid 
metabolism [56]. Several master regulators that track 
the movement of lipids and glucose throughout the 
body tightly control each of these metabolic processes 
[58,59]. This process involves a highly regulated 
transition among the production and breakdown of fatty 

acids. Several transcriptional regulators and the nuclear 
receptors control this process in the liver. PPAR-α 
functions as a nutritional sensor by controlling the rate 
of catabolization and biosynthesis of free fatty acids 
(FFAs), and it is the primary transcriptional regulator of 
genes involved in lipid metabolism.

• In the liver, PPARα raises the concentration of high-
density lipoprotein (HDL). The liver’s increased cellular 
uptake is caused by an accumulation of free fatty acids 
in the body. Hepatocyte transport protein binds to free 
fatty acids. Next, inflammation happens when the PPARα 
gene interacts to transport proteins within the nucleus. 
(Figure 3)

• Since there are currently no FDA-approved medications 
for treating nonalcoholic steatohepatitis (NASH), lifestyle 
modifications particularly weight loss are the mainstay 
of treatment [60]. Triggering inflammatory responses 
and regulating lipids are two important functions of 
transcription factors PPARs, which make them excellent 
candidates for NAFLD treatment. However, there hasn’t 
been much success focusing solely on PPAR-α thus far. 
Fibrate and gemfibrozil are examples of fibrates that 
function as PPARα agonists and ameliorate some of the 
symptoms of NASH, such as the functioning of the liver, 
lipid profile, and sensitivity to insulin, but they have 
a number of negative side effects and have no effect on 
histopathology. (e.g., decreased renal function, a rise in 
creatinine levels and homocysteine [61-65].

• Serum alanine aminotransferase, or ALT, levels in 
dyslipidaemia-affected NASH patients [66] and NASH 
histological characteristics in mice [67] are altered by 
pemafibrate, a new selective PPAR-α modulator. According 
to a recently completed phase II trial (NCT03350165), 
which was double-blind, placebo-controlled, randomised 
and multicentre, pemafibrate dramatically lowers liver 
stiffness while having no effect on liver fat content [68].

• Saroglitazar which is a dual-PPARα/γ agonist, was studied 
in a randomized, double-blind, placebo-controlled trial 
(EVIDENCES IV, NCT03061721), dramatically improved 
insulin resistance, atherogenic dyslipidemia, serum 
ALT, and liver function [69]. Two clinical trials are now 
being conducted to estimate the safety, acceptability, 
and efficacy of saroglitazar in NAFLD patients who 
have received a liver transplant (NCT03639623) and 
in female patients suffering from polycystic ovarian 
syndrome (NCT03617263). According to a Phase IV 
trial (NCT02285205). Another dual-PPARα/γ agonist is 
lobeglitazone that can improve lipid profiles, glycaemic 
control, and liver enzymes in those who have NAFLD and 
type 2 diabetes (T2DM) [70].

• To sum up, treating NASH is a difficult undertaking. 
Thus, it appears that agonists that can activate PPARα in 
conjunction with additional PPAR members are a viable 
class of medications for the treatment of NASH.
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The goal of some researchers was to determine whether 
administering UA could benefit individuals with hepatic 
fibrosis. They conducted experiments on rat liver stellate 
cells (HSCs) and discovered that UA causes these cells to 
undergo apoptosis, which somewhat improves fibrosis [71].

A regulatory sequence known as the antioxidant response 
element (ARE) is involved in the coordinated transcriptional 
activation of genes that code for several antioxidant enzymes 
and phase II detoxifying enzymes. These enzymes play a 
major role in protecting cells from oxidative stress, redox 
cycling, and neoplasia. The oxidative stress-induced nuclear 
translocation of Nuclear factor E2-related factor 2 (Nrf2), 
which is typically thought to be sequestered in the cytoplasm 
by the cytoskeleton-binding Kelch-like ECH-associated 
protein 1 (Keap1) protein, is a crucial regulatory step leading 

to ARE activation. However, Nrf2 separates from Keap 1 and 
moves into the nucleus in response to inducer activation, 
(Figure 3) where it dimerizes with a few cofactors and binds 
to ARE [72].

•	 Mice with hepatic injury exhibit decreased expression 
levels of quinone oxidoreductase-1 (NQO1), glutathione 
S-transferase (GST), and heme oxygenase-1 (HO-1). In 
the sick condition, Nrf2 expression levels in cytoplasma 
fractions are noticeably higher. The translocation 
of Nrf2 from the cytoplasm to the nucleus fraction 
was significantly enhanced by UA pretreatment. It’s 
interesting to note that UA treatment only markedly 
raised the liver’s nuclear Nrf2, HO-1, NQO1, and GST 
expression levels [72].

Figure 3: Schematic representation of UA as hepatoprotective (UA as selective PPARα agonist, as inhibitor in oxidative stress 
through Nrf2-ARE pathway) (FFA:Free fatty acid, TG: triglyceride, HDL: high density lipoprotein, VLDL: very low density 
lipoprotein, CD36: fatty acid transporter, FABP1: fatty acid binding protein 1, Nrf2: Nuclear factor E2-related factor 2, Keap1: 
Kelch-like ECH-associated protein 1, ARE: antioxidant response element, PPARα:Peroxisome proliferator activated receptor 
alpha, RXR: Retinoid X receptor, NFκb: Nuclear factor kappa-light-chain-enhancer of activated B cells).

•	 In summary, both in vitro and in vivo, UA selectively 
promotes apoptosis in activated HSCs. Further research 
is necessary to fully understand the molecular processes 
causing this cell-specific apoptosis induction, but it’s 
most likely that UA prevents the cell-survival signalling 
pathways mediated by Akt and NFκb (Figure 4), which 
in turn activates downstream caspases and causes 
mitochondrial permeability transition (MPT), which in 
turn causes apoptosis in activated HSCs. Prospective 
methodologies for clinical implementation appear 
to hold promise in establishing a novel therapeutic 
intervention for hepatic fibrosis across a range of 
persistent liver ailments [71].

•	 MPT and downstream caspase activation generated by 

UA suggest that, like gliotoxin, UA primarily induces 
conventional apoptotic cell death via mitochondria 
[73]. Furthermore, the anti-apoptotic impact of UA is 
probably largely dependent on the suppression of NFκB 
activation (Figure 4). It is hypothesised that one of the 
primary mechanisms serving as a cell-survival signal 
in activated HSCs is constitutive activation of NFκB 
[74]. It has been demonstrated that the majority of 
substances that cause HSCs to undergo apoptosis also 
prevent NFκB activation [73-76]. Additionally, it has 
been demonstrated that stimulation of the Akt-PI3K 
pathway in a variety of cell types is a crucial signal for 
cell survival. UA causes Akt phosphorylation levels in 
HSCs to drop, suggesting that inhibiting the PI3K-Akt 
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pathway might be a different strategy to cause HSCs to 
undergo apoptosis. It is postulated that in activated HSCs, 
concurrent suppression of NFκB and PI3K-Akt signals 
jointly triggers the apoptotic signal cascades and results 
in cell death. It appears that pharmacological blockage 
of the PI3K-Akt pathway with LY294002 is insufficient 
to induce apoptosis in HSCs because it did not trigger 
apoptosis in activated HSCs. They found that following a 
partial hepatectomy in mice, ursolic acid could improve 
liver regeneration [77]. There has been a notable rise in 
the ratio of liver to body weight when compared to the 
control group. Additionally, the generation of cyclins and 
C/EBP proteins has been stimulated [77].

 

Figure 4: Representaion of UA as hepatoprotective through 
NFκB pathway.

UA as Cardioprotective
•	 In developed nations, cardiovascular illnesses account 

for the majority of deaths and morbidities. They are to 
blame for roughly 30% of all fatalities globally. The most 
prevalent conditions affecting the cardiovascular system 
include varicose veins, atherosclerosis, hypertension, 
myocardial infarction, or heart attacks [78]. While not all 
cardiovascular disorders are fatal, they all cause severe 
reductions in life expectancy and involve high social and 
economic expenses [79]. At first the effects of UA on the 
heart and circulatory system were documented by some 
researchers [80]. It was found that UA therapy could 
cause a 32% reduction in the heart rates of genetically 
hypertensive rats. Numerous directions have been 
explored through more research. Aguirre-Crespo, et al. 
[4] conducted research on ursolic acid’s vasorelaxant 
[4].

•	 Vasorelaxant effects of UA are demonstrated. It has 
to do with changing the nitric oxide-cyclic guanosine mono 
phosphate (NO-cGMP) signaling pathway. By stimulating 
endothelial nitric oxide synthase (eNOS), UA has the ability 

to release NO, which is beneficial for treating hypertension 
and other cardiovascular conditions (Figure 5) [81]. 
 

Figure 5: UA as cardioprotective through generation of 
eNOS and stimulates vasorelaxation (eNOS: Endothelial 
nitric oxide synthase, FAD: flavin adenine dinucleotide, 
NADPH: nicotinamide adenine dinucleotide phosphate 
hydrogen, NO: nitric oxide, GTP: guanosine triphosphate, 
cGMP: cyclic guanosine monophosphate).

 
NO generation and release in an isolated thoracic aorta and 
in vivo on Wistar rats, respectively, were linked to the activity 
of UA [4,82]. Angiotensin I-converting enzyme (ACE), which 
is essential for controlling blood pressure, was the subject 
of Shimada and Inagaki’s study Shimada and Inagaki (2014).  
 
Additionally, ursolic acid has been employed as a chemical 
with a strong preventive effect in myocardial infarctions 
that are experimentally generated (by administering 
isoproterenol). The concentration of membrane-bound 
proteins, lipid profiles, lipid peroxidation products, and 
heart indicators in the serum of Wistar rats treated with 
isoproterenol was examined [45]. 

•	 The absence of adenosine triphosphatase (ATPase) 
activity during ischemia may produce irreversible 
necrotic changes in the impacted cardiac cell in addition 
to functional loss.

•	 Pretreatment with UA has the ability to increase the 
activity of membrane-bound ATPase, which isoprenaline 
has reduced. This may be because ursolic acid has 
antioxidant activity, antihyperlipedemic, and membrane-
stabilizing actions.

They discovered that UA exhibited cardioprotective properties 
by being able to stop changes and return enzyme activity to 
normal levels. Two investigations by Radhiga et al. expanded 
and corroborated these results [83,84]. According to reports, 
UA was able to stabilize the levels of many blood components 
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and indicators. Furthermore, research has demonstrated 
the anti-apoptotic action on cardiac muscle cells.  
 
Saravanan, et al. [85] work also revealed heart-protective 
characteristics of UA [85]. They looked into the oxidative 
stress that rats given ethanol experienced. Similar to the 
aforementioned studies, ursolic acid raised antioxidant levels 
and the activity of enzymes that scavenge free radicals while 
decreasing the amounts of products from lipid peroxidation 
in cardiac tissue. The administration of ursolic acid also 
guards against blood vessel damage. 
 
According to Pozo, et al [86] at a dose of 6 mg/kg body 
weight per day, UA can stop the development of neointima in 
the carotid artery of rats [86]. 
•	 Ursolic acid has been shown to compete with TGF-β1 

receptor (Growth factor of tranformation) binding 
recently [87]. This TGF-β1 pathway Inhibits this signaling 
pathway has been demonstrated to prevent neointima 
development and the start of various fibrotic diseases 
[88]. The TGF-β1 pathway is essential for constrictive 
remodeling associated with angioplasty. Therefore, it is 
reasonable to propose that ursolic acid’s “in vivo” effects 
may be somewhat accounted for by its ability to decrease 
TGF-β1 system activity.

•	 Pentacyclic triterpenes, including ursolic acid, show 
potential for treatment against vascular diseases by 
suppressing NF-κB and matrix metalloproteinase 
(MMPs). Particularly, UA decreases MMP-9, which is 
linked to cellular migration and proliferation following 
vascular damage [89,90] in addition, oleanolic, betulinic, 
and ursolic acids block NF-κB [89] while other research 
indicates that stopping neointimal development only by 
blocking vascular smooth muscle cells (VSMC) migration 
with MMP inhibitors is insufficient [91]. This is a crucial 
action because proinflammatory cytokines in cultured 
VSMCs activate [92] NF-κB in a rat carotid injury model 
[93].

The protective function of UA against C-reactive protein-
induced damage to human umbilical vein endothelial cells 
(HUVECs) is explained by the authors in their study [94]. 
According to their findings, UA reduced the negative effect in 
a way that was dose-dependent. Scientists disagree about the 
effect of ursolic acid on atherosclerosis since some research 
suggest positive effects while others suggest harmful effects. 
For instance, Ullevig et al discovered that giving diabetic 
mice UA prevented monocyte dysfunction and reduced the 
development of accelerated atherosclerosis [95], while 
Messner, et al. [96] showed that UA administration stimulated 
the formation of atherosclerotic plaque in mice [96]. Kim, 
et al. [98] have demonstrated the possible detrimental 
effect of UA ingestion [97]. They found that this triterpene 
can increase platelet aggregation susceptibility; therefore 

individuals who are prone to cardiovascular events should 
utilize it with caution [98].

Conclusion

Nowadays, cardiac disorders and liver diseases are very 
common in people due to their irregular lifestyle. But 
synthetic drugs which are used have multiple adverse effects. 
Ursolic acid which is plant derived natural compounds found 
in fruits, vegetables, easily available natural sources could be 
the new therapeutic entities of these complications. In this 
review specifically the mechanistic pathway of ursolic acid as 
cardioprotective and hepatoprotective have been discussed 
here. This would allow the researchers paving the way for 
more effective therapeutic interventions in diverse health 
conditions. 
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