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Abstract

Introduction: The treatment of neurodegenerative diseases may face challenge due to an efflux transporter, p-glycoprotein 
residing at the blood brain barrier which normally curtails bioavailability of xenobiotics and chemotherapeutic drugs.
Objective: This study is aimed at performing molecular docking to identify potential herbal inhibitors of p-glycoprotein which 
would enhance drug bioavailability inside the target cell.
Methods: Druggability and pharmacokinetic attributes of the bioactive compounds were evaluated and their binding interactions 
were assessed against p-glycoprotein (6C0V) utilizing molecular docking with CDOCKER program of Discovery Studio.
Results: The herbal inhibitors viz., palmatine from Tinospora cordifolia, withanolide D and somniferine from Withania somnifera, 
hemidescine from Hemidesmus indicus have been ranked as the top interacting molecules against p-glycoprotein based on their 
binding efficacy.
Conclusion: These medicinal herbs if used in conjunction with drugs, are expected to enhance their bioavailability and may 
simultaneously alleviate the neurodegenerative diseases. The lead compounds maybe considered for in vivo experiments and 
clinical trials to augment the medical treatment.
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Abbreviations: BBB: Blood-Brain Barrier; MDR: 
Multidrug Resistance; AD: Alzheimer’s Disease; ADMET: 
Absorption, Distribution, Metabolism, Excretion and Toxicity; 
MD: Molecular Dynamics; PD: Parkinson’s Disease.

Introduction

Neurodegenerative diseases encompass a wide range of 
disorders that result from progressive and irreversible 
neuronal degeneration leading to the deterioration of 
cognitive and motor functions. It is estimated that millions 
of people worldwide suffer from these debilitating diseases 

which remains ambiguous until the disease has advanced 
afflicting large portion of aging population. The etiology 
of neurodegenerative disease is multifactorial and involve 
a combination of genetic, environmental and lifestyle 
factors, associated with molecular mechanisms including 
oxidative stress, protein misfolding, mitochondrial defects, 
synaptic dysfunction, cell cycle dysregulation, and neuro-
inflammation [1].

Drug efflux transporters such as p-glycoprotein residing at 
the blood-brain barrier (BBB) and blood-spinal cord barrier 
serve as defence mechanism against xenobiotics but pose 
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major obstacle to drug delivery to central nervous system 
and is responsible for multidrug resistance (MDR) [2]. Thus, 
extensive work has been carried out in identification of 
p-glycoprotein inhibitors which when co-administered with 
such drugs, would enhance their bioavailability inside the 
target cell.

Medicinal herbs and their active metabolites have played 
significant role in treatment of neurodegenerative diseases 
since antiquity. Withania somnifera has been shown to 
improve cognitive function and reduce oxidative stress in 
animal studies [3]. The promising role of natural bioactive 
compounds in alleviating Alzheimer’s disease (AD) is 
attributed to their anti-cholinesterase, anti-inflammatory 
and anti-apoptotic effect [4]. These secondary metabolites 
have functional scaffolds to revert p-glycoprotein mediated 
MDR [5]. Most neurodegenerative drugs viz., levodopa, 
pergolide, pramipexole [6]; donepezil [7]; riluzole [8] are 
substrates of p-glycoprotein and are thus effluxed by the 
cell. Here, nine plants with neuroprotective proficiency 
viz., Withania somnifera [9]; Tinospora cordifolia [10]; 
Hemidesmus indicus [11]; Saraca indica [12]; Nardostachys 
jatamansi [13]; Aloe barbadensis [14]; Nelumbo nucifera 
[15]; Swertia chirata [16]; Mucuna pruriens [17] have been 
selected to screen their inhibitory potential against the 
efflux transporter by molecular docking. The objective of 
the study is to identify neuroprotective herbal constituents 
as p-glycoprotein inhibitors which would help retention of 
allopathic drugs inside the target cell.

Materials and Methods

Protein preparation: The structure of p-glycoprotein (PDB 
code: 6C0V) [18] was downloaded from RCSB protein data 
bank (http://www.rcsb.org). The protein preparation module 
of Discovery Studio was used for structure optimization and 
energy minimization. Dogsitescorer server was utilized for 
the detection of potential binding pockets of p-glycoprotein 
(https://proteins.plus/#dogsite).

Ligand Preparation
Canonical smiles of 154 bioactive compounds from nine 
medicinal herbs and control drug doxycycline was obtained 

from Pubchem, ChemSpider and Chembl databases. The 
canonical smiles were then translated into spatial data 
file format using online SMILE translator. The molecules 
were optimized using filter ligands module available in the 
Discovery Studio platform for assigning proper bond orders 
and generation of accessible tautomers, stereoisomers, and 
ionization states.

Drug Likeness and ADMET Analysis
Molinspiration tool was employed for calculation of drug-
likeness attributes of small molecules. Different molecular 
descriptors such as molecular weight, number of hydrogen 
bond accepters, number of hydrogen bond donors and 
lipophilicity were calculated utilizing Lipinski’s rule of 
five. pkCSM server was utilized for evaluation of ADMET 
(Absorption, Distribution, Metabolism, Excretion and 
Toxicity) property of the components.

Molecular Docking Analysis
In a search for a potential inhibitor against p-glycoprotein, 
molecular docking was performed using CDOCKER program 
of Discovery Studio. CDOCKER is a grid-based molecular 
docking method that employs a molecular dynamics (MD) 
simulated-annealing-based algorithm to dock ligands into 
a receptor’s active site. The protein is kept rigid while the 
ligands are allowed to flex followed by a final minimization 
step to refine the docked poses. After docking, the top ranked 
poses for each component were analyzed based on lowest 
binding free energy, hydrogen bonds and hydrophobic 
interactions.

Results

Drug Likeness and ADMET Analysis
154 components of nine neuroprotective herbs were initially 
screened based on druggability and ADMET properties. 131 
compounds displayed acceptable drug-likeness properties 
which indicated that these compounds may easily be 
transported, diffused, and absorbed by the body. The drug-
likeness attributes of 10 components (inhibitors) have been 
enlisted in Table 1.

S.no. Compounds MW LogP nOHNH nON nViola tions
1 Palmatine 352.41 3.38 0 4 0
2 Withanolide D 470.61 4.15 2 6 0
3 Somniferine 608.69 2.69 2 9 1
4 Hemidescine 650.85 4.33 3 10 1
5 Syringaresinol 418.44 2.62 2 8 0
6 Heminine 608.81 3.63 4 9 1

https://academicstrive.com/ANPL/
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7 12-deoxywithastromon olide 470.6 3.2 2 6 0
8 16-Dehydropregnenolo ne 314.47 3.81 1 2 0
9 Withaferin A 470.61 3.86 2 6 0

10 Tembetarine 344.43 -1.6 2 5 0

Table 1: Drug-Likeness attributes of ten p-glycoprotein inhibitors.
MW-Molecular weight, LogP-Log of octanol/water partition coefficient, nON-No. of hydrogen bond acceptors, nOHNH -No. of 
hydrogen bond donors, nViolations- No. of rule of five violations.

The result of pharmacokinetic study of 10 components have 
been summarized in Table 2. 26 components from a pool of 
154 components were found to be p-glycoprotein inhibitors 

and their ADMET values were within an acceptable range. 
All the compounds showed good intestinal absorption with 
moderate BBB penetration.

S.no. Compounds
Water 

solubility 
(log mol/L)

CYP P450 2D6 
inhibition

Intestinal 
absorption (% 

absorbed)

BBB 
permeability 

(log BB)

Fraction 
unbound 

(Fu)
1 Palmatine -4.194 Yes 97.084 -0.112 0.245
2 Withanolide D -5.127 No 99.2 -0.315 0.093
3 Somniferine -3.12 No 94.052 -0.548 0.262
4 Hemidescine -5.441 No 84.224 -1.333 0.186
5 Syringaresinol -3.92 No 78.823 -0.771 0
6 Heminine -5.392 No 73.96 -1.186 0.213
7 12- deoxywithastromonolide -4.893 No 84.79 0.023 0.088
8 16-Dehydropregnenolone -4.735 No 96.151 0.148 0.123
9 Withaferin A -5.063 No 85.345 -0.03 0.105

10 Tembetarine -3.684 No 94.491 -0.474 0.102

Table 2: ADMET properties of ten p-glycoprotein inhibitors.

Molecular Docking Analysis
The bioactive compounds were screened against the efflux 
transporter, p-glycoprotein by performing molecular 
docking using the computational program CDOCKER. The 
inhibitors of the efflux carrier protein were ranked based on 
their magnitude of negative binding free energy along with 
hydrogen bond and hydrophobic interactions, all of which 
play significant role in stabilizing appropriate conformation 
of ligand at the active site of the receptor.

The docking results demonstrated that out of 154 natural 

compounds used in the present study, four bioactive 
components viz., palmatine, withanolide D, somniferine and 
hemidescine have a higher binding energy of −117.85, −96.66, 
−92.28, and −88.77 kcal/mol, respectively, than the control 
drug doxycycline whose binding energy was determined 
to be -79.09 Kcal/mol. These four natural compounds 
were identified as the best compounds interacting with 
p-glycoprotein based on their binding potential. The details 
of binding interactions of inhibitory components are 
displayed in Table 3.

S.no Inhibitory 
components

No 
of H 

bond
Binding site (H bond)

No of 
Hydro 
phobic 

interaction

Binding site 
(Hydrophobic 
interaction)

Binding 
energy 

(kcal/mol)

1 Palmatine 1 THR76 1 ILE736 -117.85

2 Withanolide D 3 GLU972,SER979,GLY737 6 PHE79, PHE336, ILE736, 
LEU332, LEU975, PHE732 -96.66

https://academicstrive.com/ANPL/
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3 Somniferine 3 PHE79, THR76, THR740 6 PHE79, LEU332, LEU975, 
ILE736, ILE328, ALA80 -92.28

4 Hemidescine 0 - 11

PHE79, PHE336, PHE732, 
PHE72, ILE328, ALA80, 

LEU332, LEU976, 
LEU975, ILE736, ALA729

-88.77

5 Syringaresinol 4 LEU332, ALA729, 
SER979, GLU972 5 PHE72, PHE79, LEU332, 

LEU975, ILE736 -79.8

6 Heminine 4 SER979, GLU972, 
ALA729, GLY737 6 PHE79, PHE72, LEU332, 

ILE736, ALA729, LEU976 -78.51

7
12- 

deoxywithastromonoli 
de

0 - 8
PHE72, PHE732, PHE79, 

LEU332, LEU976, 
LEU975, ILE736, ALA729

-74.91

8 16- 
Dehydropregnenolone 0 - 7

PHE732, PHE72, PHE336, 
LEU976, LEU975, 
LEU332, ILE736

-71.24

9 Withaferin A 2 PHE79, PHE336 9

PHE72, PHE336, ILE736, 
PHE732, PHE983, 
LEU332, LEU975, 
LEU976, ALA729

-69.94

10 Tembetarine 2 PHE336, SER979 3 PHE336, PHE732, ILE736 -67.39
11 Doxycycline 1 LEU976 3 PHE732, ILE736, LEU332 -79.09

Table 3: Binding interactions of inhibitory components and control drug doxycycline against pglycoprotein.

Figure 1: Docking interactions of human p-glycoprotein with herbal compounds: (A-B) Palmatine and (CD) Withanolide D: 
Graphics generated by Discovery Studio (left) and Chimera (right).

https://academicstrive.com/ANPL/
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From the 2D interaction plot (Figure 1), it was observed 
that palmatine formed one hydrogen bond with amino acid 
residue THR76 (2.62 Å), and one hydrophobic interaction (pi-
alkyl) with ILE736 (4.61 Å). In case of withanolide D, three 
residues, viz., GLU972 (1.84 Å), SER979 (2.83 Å), and GLY737 
(2.87 Å), formed the hydrogen bonds and six hydrophobic 
(alkyl and pi-alkyl) interactions were observed with amino 
acid residues PHE79, PHE336, ILE736, LEU332, LEU975, 
PHE732 at distance of 4.30 Å, 4.41 Å, 4.57 Å, 4.57 Å, 4.62 Å 
and 4.55 A° respectively. Somniferine exhibited hydrogen 
bond with three residues, viz., PHE79 (2.44 Å), THR76 (3.07 
Å), and THR740 (2.29 Å), and six hydrophobic (alkyl and pi-
alkyl) interactions with amino acid residues PHE79, LEU332, 
LEU975, ILE736, ILE328, ALA80 at distance of 4.94 Å, 4.54 Å, 
5.06 Å, 5.14 Å, 5.39 Å and 4.39 A° respectively.

Discussion

Overexpression of p-glycoprotein is responsible for MDR 
that severely limits the effectiveness of neurodegenerative 
drugs. Overcoming p-glycoprotein mediated drug efflux is 
an important approach to enhance the bioavailability of its 
substrate drugs.

Herbal bioactive compounds exert synergism with 
neurodegenerative drugs and overcome resistance via 
modulation of p-glycoprotein transport function. Inhibition of 
p-glycoprotein in adriamycinresistant human breast cancer 
cell line MCF-7/ADR by syringaresinol [19] (Swertia chirata); 
reversion of MDR in NCI/ADR-RES cells by β-Sitosterol [20] 
(Aloe barbadensis); modulation of MDR1 efflux function 
through stimulation of ATPase enzymes by palmatine [21] 
(Tinospora cordifolia) signify the efficacy of neuroprotective 
components in modulation of p-glycoprotein mediated drug 
efflux.

Herbal extracts and their active metabolites have been 
reported to improve cognitive function and slow down 
progression of neurodegenerative diseases [22]. Neferine 
(Nelumbo nucifera) exerted neuroprotection against 1- 
methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced 
Parkinson’s disease (PD) in mice through its anti-
inflammatory effect, downregulation of pro-inflammatory 
cytokines as well as upregulation of dopamine levels 
[23]. Similar neuroprotective effect was observed on 
administration of A B C D kaempferol (Saraca indica) in 
ovariectomized rat models of sporadic AD via elevation of 
neuroinflammation markers and improvement of cognitive 
impairment [24]. Nardosinone from Nardostachys jatamansi 
decreased motor and cognitive symptoms in PD mice model 
by regulating dopamine receptor D2 expression [25]. 
Therefore, these medicinal herbs if used in conjunction 
with neurodegenerative drugs, are expected to enhance 

their bioavailability and simultaneously impart additional 
neuroprotection.

Our finding suggests that palmatine, an isoquinoline alkaloid 
from Tinospora cordifolia with its better binding affinity and 
stronger interactions than doxycycline maybe considered 
as the lead compound in circumvention of p-glycoprotein 
mediated drug efflux. Additionally, palmatine has been 
reported to manage oxidative stress-mediated neurological 
diseases [26], reduce formation of amyloid plaques, prevent 
tau protein aggregation and improve learning and memory 
in AD mice model [27].

Conclusion

The neuroprotective natural p-glycoprotein inhibitors 
showed compliance with the Lipinski’s rule of five and 
met essential conditions for ADMET properties. Their 
binding affinity promises increased bioavailability of the 
neurodegenerative drugs, thereby making them potential 
lead molecules for coadministration. The current study 
manifested that palmatine, withanolide D, somniferine and 
hemidescine might play crucial role in circumvention of drug 
efflux and serve as potential candidates for amelioration of 
neurodegeneration. Further in vitro and in vivo experiments 
are needed to corroborate the results of the present study.
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