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Abstract

Changing lifestyle and dietary patterns , constraint due to COVID-19 pandemic have shifted life to more home confined with 
restricted mobility, which could contribute to an increase in the burden of neurodegenerative disease like Parkinson’s Disease 
(PD). This neurodegenerative disease, which stood second among brain disorders, is rapidly affecting the geriatric population. 
There are reports on accelerating the early onset of this disease. As the disease advances, the symptoms become more difficult to 
control and deteriorate, having an impact not only on the quality of patient’s life but also on that of their family and caregivers. 
Therefore, society has a pressing need to be aware of other factors like oxidative stress (OS) and inflammation that may be 
influencing the disease’s development and detecting the disease in its prodromal stage. Chronic psychological stress acts like a 
roller-coaster in the body and alter the balance of oxidants/antioxidants leading to oxidative stress followed by inflammation. 
Other two lifestyle conditions, Insulin resistance (IR) and a Vitamin D Deficiency D(VDD) are also contributing to the enhancement 
of neurodegeneration. Insight molecular mechanisms of PD are intertwined with epigenetic factors like IR-T2DM, VDD, obesity, 
OS, and inflammation that lead to the death of DA neurons and disease onset. As the said altered health profiles are reversible 
and with due attention can be reverted or to some extent be arrested, the progressive neurodegenerative disease like PD can be 
prevented or slowed down by taking early preventive measures. 
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Abbreviations: PD: Parkinson Disease; NADPH: 
Nicotinamide Adenine Dinucleotide Phosphate; T2DM: 
Type 2 Diabetes Mellitus; VDD: Vitamin D Deficiency; SNpc: 
Substantianigra Pars Compacta; OS: Oxidative Stress; DA: 
Dopaminergic Neurons; ROS: Reactive Oxygen Species; IR: 
Insulin Resistance; IGF1: Insulin Like Growth Factor 1; IGFBP: 
Insulin like Growth Factor Binding Protein; BBB: Blood 
Brain Barrier; CNS: Central Nervous System; FFA: Free Fatty 
Acids; GH: Growth Hormone; TNFα: Tumor Necrosis Factor 
Alpha; IL-6: Interleukin- 6; IL-1β: Interleukin-1 Beta; MCP-1: 

Monocyte Chemoattractant Protein-1; IRS1: Insulin Receptor 
Substrate 1; INSR: Insulin Receptor; IGF1R: Insulin Receptor 
Growth Factor 1 Receptor; PI3K: Phosphoinossitide-3-
Kinase; PIP2: Phosphatidylinositol 4,5-Bisphosphate; 
PIP3: Phosphatidylinositol 3,4,5-Bisphosphate; PDK1: 
3-Phosphoinositide-Dependent Kinase-1; NOX4: NADPH 
Oxidase 4; GLUT4: Glucose Transporter Type-4; FOXO1: 
Forkhead Box Protein 01; TLR4: Toll-Like Receptor 4; ETC: 
Electron Transport Chain; GSK3β: Glycogen Synthase Kinase 
3 Beta; NF-κB: Nuclear Factor Kappa B; CSF: Cerebrospinal 
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Fluid; NGF: Nerve Growth Factor; AMP: Adenosine 
Monophosphate; bFGF: Basic Fibroblast Growth Factor; 
MHC: Major Histocompatibility Complex; MHC-II: Major 
Histocompatibility Complex-II; HLA: Human Leukocyte 
Antigen; HLA-DR: Human Leukocyte Antigen-DR; IFN-α: 
Interferon- Alpha; NOS2: Nitric Oxide Synthase 2; COX2: 
Cyclooxygenase2; PAMPs: Pathogen-Associated Molecular 
Pattern Molecules; DAMPs: Danger-Associated Molecular 
Pattern Molecules; AMPK: AMP-Activated Protein Kinase; 
VDR: Vitamin D Receptor; CaMKKβ: Calmodulin Protein 
Kinase Beta.

Introduction

Since 2020, after the outbreak of COVID-19, stress has 
extended in a new dimension in human life. Along with the 
pre-existing stressors, the added burdens are suffering from 
COVID-19 and measures to control the spread of COVID, 
such as confinement-induced stress, depression, and anxiety. 
Stressful event causes a chain of reactions that begins in 
the brain and results in the production of proinflammatory 
cytokines while suppressing the genes involved in the 
production of interferons and antibodies. Moreover, cytokines 
induce oxidative stress after the stimulation of reduced 
nicotinamide adenine dinucleotide phosphate (NADPH) 
[1]. The essential causes of OS are either the mental stress, 
nutritional origin in the case of deficiencies in vitamins and 

trace elements, overloads in pro-oxidant factors, accidental 
origin (inflammation, infections, exposure to pro-oxidizing 
xenobiotics), and genetic origin [2]. OS has been implicated 
in a range of chronic neurodegenerative disorders, including 
Alzheimer’s disease, Parkinson’s disease (PD), Huntington’s 
disease, and Amyotrophic Lateral Sclerosis [3]. With the 
changing life style like more sedentary work-culture and 
less exposure to sunlight in new normal era, other two 
very important health issues, Type-2 Diabetes (T2DM) and 
Vitamin D deficiency (VDD) is emerging that need to be 
addressed. Role of OS, T2DM and VDD on pathoaetiology of 
PD will be discussed in detail in this review.

PD is a degenerative brain condition that spreading quickly 
and the illness does not just affect the elderly; it also appears 
before old age [4]. PD has a 10% genetic aetiology and the 
rest of the cases are sporadic. It is still unclear what exactly 
caused the disease. Genetic and epigenetic variables may 
play a role, crosstalk or contribute to sporadic PD [5]. The 
disease’s early symptoms may be ignored and overlooked, 
and it’s possible that all sufferers won’t have the same signs 
and symptoms as others. Later in life, the disease is defined 
by typical motor symptoms such as postural instability, 
stiffness, and bradykinesia. Dopaminergic (DA) neurons of 
the brain’s substantianigra pars compacta (SNpc), which 
are in charge of regulating and coordinating movement and 
coordination, are the source of these motor issues [6].

Figure 1: Schematic diagram showing the role of abnormal level of IGF1, obesity, vitamin D deficiency, oxidative stress, and 
inflammation and insulin resistance in Parkinson’s disease.
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The presence of aggregated and misfolded forms of 
α-synuclein and the Lewy body (the pathological hallmark 
of PD) in the DA neurons confirms this neurodegenerative 
disorder together with some other associated proteins like 
tau and β amyloid proteins [6]. Numerous situations and 
factors can cause the death of DA neurons and the main 
mechanism behind DA loss is OS and inflammation [7,8]. 
These two underlying mechanisms are also triggered by 
insulin resistance (IR) [9], which begin to build slowly in 
a person even before the onset of diabetes and is remain 
undetectable and is one of the causes behind PD development. 
There is evidence too, that people with type T2DM are 
more likely to develop PD [10,11]. Again, obesity a rapidly 
growing public health concern is a major contributing factor 
to IR which leads to hyperinsulinemia [12]. The high level of 
insulin signals to the liver produce more insulin-like growth 
factor 1 (IGF1) as well as reduce the insulin-like growth 
factor binding proteins (IGFBPs) [13]. Again due to reduced 
concentration of IGFBPs, there is an increase in the levels 
of free insulin-like growth factor 1 (F-IGF1) in the serum as 
IGF1 remains in the free state if it’s not bound to IGFBPs [13]. 
IGF1 is a neurotrophic factor that aids in the protection of 
neurons other than maintaining glucose homeostasis [14]. 
As IGF1 has an almost similar molecular structure to insulin, 
it also shares a similar downstream pathway for their 
actions. Both the above and below normal levels of IGF1 are 
linked to IR [15] and PD [16,17], suggesting that IR might be 
a potent regulator in the development of PD. The probable 
mechanisms by which the IGF1-PI3K-Akt pathway is blamed 
to be the culprit for PD are inflammation and OS. Further, 
in addition to IR, the pathway is also negatively influenced 
by VDD [18], another pandemic that is increasing globally, 
particularly in elderly people, and aids in developing PD [19]. 
Vitamin D’s ability to cross the blood-brain barrier (BBB) 
suggests its role in the brain. Vitamin D insufficiency also 
causes inflammation, OS [19] and IR [20] which is the key 
underlying regulators of PD pathogenesis. Therefore, this 
review article aims to comprehend the role of IGF1in IR and 
PD as well as the impact of inflammation and OS behind PD 
development in light of vitamin D deficiency Figure 1.

Discussion

Stress, Insulin Resistance and Parkinson’s Disease
Stress hormones like cortisol is a potent insulin-antagonist 
that inhibit insulin secretion, stimulate glucagon secretion 
and disrupt insulin signaling pathway causing IR. Insulin 
resistance is one the fastest growing pandemic all around 
the world with a risk of causing neurodegenerative diseases 
other than metabolic syndromes like T2DM. IR plays a great 
role in causing inflammation and OS which are the root 
cause behind the development of PD [11]. These two factors; 
OS and inflammation can also interfere with the PI3K-Akt 

pathway that results in IR, suggesting that they influence each 
other. In addition to insulin, IGF1 takes charge of controlling 
glucose homeostasis and is also a neurotrophic growth 
factor having multiple functions and plays a great role in 
the central nervous system (CNS) growth and development 
[14]. IGF1’s position in the CNS and its involvement in 
neurodegeneration are indicated by IGF1 expression in 
neuronal-rich cells and the presence of IGF1 receptors in 
the brain, as well as IGF1 can also enter the CNS through the 
choroid plexus [21]. IR results either due to impairment in the 
insulin signaling PI3K-Akt pathway or due to abnormal IGF1 
levels. Elevated or reduced levels IGF1 is associated with IR 
and acts as an indicator for developing T2DM [15]. Due to the 
involvement of IGF1 in the IR, it is strongly associated with 
hyperinsulinemia and obesity. Obesity and overweight are 
other growing health concerns contributed by high nutrient 
content and elevated free fatty acids (FFA) can also influence 
IGF1 levels [13]. Circulating IGF1 and IGFBPs control the 
biological action of IGF1. The binding of IGF1 with its binding 
protein is essential for its activity and it is also studied that 
IGF1 can only cross the BBB if it is bound with IGFBPs [22]. 
The IGFBPs are synthesized by the liver and their secretion 
is negatively correlated with high levels of insulin [13]. 
FFA in obesity also trigger the pancreatic β cells to secrete 
insulin making the condition hyperinsulinemic [23]. On the 
other hand, insulin above optimal level stimulates the liver 
to synthesize more and more IGF1 and reduced IGFBPs, 
as a result, free circulating IGF1 level goes on increasing 
[13], and this high free IGF1 level acts as a negative 
feedback regulator of growth hormone (GH). Reduced and 
decreased GH is associated with the obesity problem [13]. 
Therefore, the binding of IGF1 to the IGFBPs might suggest 
that binding may promote and enhance IGF1 action. The 
free IGF1 is might be the reason behind impairment in the 
insulin signaling PI3K-Akt pathway. Studies have also found 
that free IGF-I levels are higher in obese people [24] and 
elevated FFA in these obese individuals can activate JNK 
and NFκB pathway that results in increased expressions 
of proinflammatory cytokines like tumor necrosis factor-α 
(TNF-α), interleukin-6(IL-6), interleukin-1 beta(IL-1β) and 
circulating monocyte chemoattractant protein 1(MCP-1). 
Pro-inflammatory cytokines decrease insulin sensitivity 
by phosphorylating insulin receptor substrate 1(IRS1) at 
a serine residue and dephosphorylating IRS1 at a tyrosine 
residue thus, downregulating the PI3K-Akt pathway [25]. 
Further, in obesity there is an increase in the activity of 
tyrosine phosphatases, an enzyme that interfere with the 
insulin signaling pathway and responsible for maintaining 
the relatively stable phosphorylation of the INSR and other 
proteins involved in the insulin signalling cascade. Active 
tyrosine phosphatases reduced the autophosphorylated form 
of INSR at tyrosine residue as well as dephosphorylating IRS1 
which signals downstream protein of the signalling pathway 
[26], resulting IR and obesity.
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IGF1- PI3K-Akt Signalling Pathway in Insulin Resistance 
and Parkinson’s Disease
IGF1 actions are mediated by binding to its receptors. 
IGF1 shares the same insulin signaling PI3K-Akt pathway 
and initiates a similar cascade for maintaining the normal 
functions for which it is responsible. IGF1 can bind to 
the hybrid receptor (INSR-IGF1R) or the insulin receptor 
(INSR) in addition to its receptor, IGF1R [27]. The presence 
of INSR and IGF1R in the brain, suggests its functions in 
CNS [28]. The binding of IGF1 to the receptors leads to 
activation and phosphorylation of the IRS1/2 (insulin 
receptor substrate) that phosphorylates and recruits PI3K 
(phosphoinositide-3-kinase) which in turn phosphorylates 
PIP2 (phosphatidylinositol 4,5-bisphosphate) to 
PIP3 (phosphatidylinositol 3,4,5) allowing PDKI 
(phosphoinositide-dependent kinase-1) for Akt activation 
and phosphorylation. Akt is the main important downstream 
substrate of the signaling pathway that regulates a variety of 
physiological responses by inhibiting or stimulating specific 
substrates after phosphorylation [27].

The glucose transporter type 4 (GLUT4) is moved to the 
plasma membrane by Akt’s phosphorylation of the AS160-
a160kD protein, allowing the cell to take up extracellular 
glucose and preserve glucose homeostasis. Therefore, 
alterations in the IGF1 interfere with AS160 and may 
prevent GLUT4 from functioning normally in T2DM [29]. 
Hyperinsulinemia produces a negative effect on GLUT4 and 
shifts the insulin signaling pathway at PI3K, phosphorylating 
Rac by PI3K rather than PIP2, which increases the activity 
of NOX4 (NADPH4 oxidase 4-a powerful oxidizing enzyme). 
The increased activity of NOX4 increases ROS concentration 
which triggers casein kinase-2, which then, in turn, activates 
the retromer, translocating GLUT4 to the lysosomes for 
destruction. Thus, making the environment more oxidative 
and hyperglycemic . The activity of NOX4 can be increased by 
adipose tissues that secrete adipokines, a class of cytokines 
that raises ROS and also encourage macrophages to produce 
more pro-inflammatory cytokines, hence aggravating 
systemic inflammation and leading to more ROS production 
that impairs insulin sensitivity [30]. Akt also phosphorylates 
the FOXO1 (forkhead box protein O1) transcription factor 
that results in the translocation of FOXO1 from the nucleus 
to the cytoplasm, making it inactive. This inactivation causes 
the transcriptional stimulation of gluconeogenesis to halt 
[31]. 

In the absence of an insulin or IGF1 signal, FOXO1 goes to the 
nucleus and promotes the production of gluconeogenic genes 
such as phosphoenol pyruvate carboxykinase and glucose-
6-phosphatase gene and thus increase glucose production 
[31]. FOXO1 inhibits the production of adipose tissue and 
also plays important role in apoptosis because it causes 

the production of death receptor ligands [32]. FOXO1 by 
increasing TLR4 (Toll-like receptors 4) mediated signaling in 
mature macrophages promotes inflammation and is tightly 
controlled by the PI3K-Akt pathway [33]. Activation of FOXO1 
disrupts the mitochondrial electron transport chain (ETC) 
and NAD/NADH ratio, thus suppressing the mitochondrial 
biogenesis. Furthermore, studies had shown that activation 
of FOXO1 is activated by IR that, lowers mitochondrial 
content or affects mitochondrial integrity [34]. Akt also 
phosphorylate and inactivate another important substrate 
glycogen synthase kinase β (GSK3β) which is very essential 
for the normal functioning of the signaling pathway [28]. 
Activation of GSK3β is responsible for various pathological 
conditions and diseases [35]. Whereas, inhibition of GSK3β is 
seen to reduce IR and stimulate glucose transport, suggesting 
that it plays a great role in glucose homeostasis [36].

Downregulation of IGF1/PI3K-Akt signaling with the 
elevation of GSK3β activity also leads to brain disorders. 
Thus inactivation of GSK3β is essential for various normal 
functions that include glucose homeostasis, neuronal growth 
and development, and cell survival. An activated form of 
GSK3β is responsible for various abnormal conditions 
including PD. Activation of this kinase leads to upregulationof 
NF-κB pathways involving an increase in pro-inflammatory 
cytokines IL-6, IL-1β, and TNFα and a decrease in anti-
inflammatory cytokines such as IL-10 [35], suggesting that 
the PI3K/Akt/GSK3β signaling pathway appears to reduce 
NF-κB nuclear translocation and is also the source of 
inflammation. Further, pro-inflammatory cytokines like IL-6 
and IL-1β can alter the BBB’s permeability and raise the 
permeability of other solutes or immune cells, which causes 
brain IR and neurodegeneration [37]. Pro-inflammatory 
cytokines can also lead to a reduction in insulin sensitivity 
and an increase in IR. This accelerates neurodegeneration 
while also causing mitochondrial damage, that in turn raises 
the production of ROS to sustain the inflammatory state.

Activated GSK3β takes part in increasing caspase 3 & 9, thus 
inducing neuronal apoptosis by impairing mitochondrial 
function and plays role in α-synuclein aggregation and 
phosphorylation. Altered insulin signalling (insulin or 
IGF1/PI3K/Akt signaling) is also responsible for tau and 
β-amyloid (Aβ) protein phosphorylation (a misfolded 
protein aggregate) that is observed in PD with dementia [35]. 
Hence, it has been well established that GSK3β dysregulation 
participates in a variety of cellular processes that eventually 
promote the pathology of neurodegenerative diseases such 
as PD other than hampering glucose homeostasis. Therefore, 
the IGF1/PI3K/AKT/ GSK3β pathway is found to regulate 
many important functions that influence the development 
of PD, and the effect of IGF-I is found to be mediated by 
the activation of the PI3K-Akt pathway [35]. Both high and 
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low levels of IGF1 are associated with PD. Supporting the 
notion some studies have reported increased levels of IGF-
1 in serum or CSF of early PD patients [16,38] while other 

studies showed low plasma IGF-1 level association with 
poor cognitive performance in PD [17], possibly via the key 
underlying process of inflammation and OS (Figure 2).

Figure 2: Role of abnormal level of IGF1 in insulin resistance and Parkinson’s disease.

Oxidative Stress and Parkinson’s Disease
Oxidative stress, which is associated with age-related 
neurodegenerative diseases PD [8], is defined as a cell 
having higher quantities of ROS than antioxidants [39]. The 
ROS molecules, which are unstable and reactive, destroy 
cellular molecules and are the main cause of mitochondrial 
malfunction, which results in the death of the neuron [8]. 
The fundamental function of mitochondria is the production 
of ATP through the process of oxidative phosphorylation 
at the electron transport chain. As a consequence, ROS are 
also produced by mitochondria. The mitochondria, which 
are both the generator and the sufferer of ROS, control 
apoptosis, calcium homeostasis, and stress response [39]. 
Any impairment or dysfunction in the mitochondria leads 
to several abnormal outcomes, triggering and initiating a 
cascade that leads to the death of the DA neurons, the key 
cause behind PD [8]. Hyperactive mitochondria due to high 
nutrients or hyperglycemic conditions, produce more ROS 
[30], making the environment more stressful and stimulating 
various stress pathways resulting in mitochondrial 
dysfunction and ultimately leading to the death of the DA 
neurons in the brain’s SNpc to die [8,40]. Since neurons 

can only store a little quantity of energy and the brain has a 
high oxygen requirement due to the existence of numerous 
mitochondria to satisfy the demands of high levels of energy 
consumption [41], OS is a big threat to these cells or a major 
victim of OS. Further, due to a large number of mitochondria, 
there is more mitochondrial enzyme in the brain and the 
majority of these enzymes need iron to function [42].

Iron on the other hand can produce ROS by Fenton’s reaction, 
enhancing OS and causing neuronal death. In 2020, a study 
reported high levels of iron in the substantianigra of PD 
patients [43]. The loss of DA neurons can happen due to 
dopamine itself. Dopamine undergoing auto-oxidation forms 
dopamine quinones and itself becomes the source of OS. This 
reactive dopamine quinone can make a component called 
neuromelanin, which can activate microglia and trigger 
neuroinflammation [44] and can also bind with iron and 
react with hydrogen peroxide (H2O2) forming a member of 
ROS- hydroxyl ions (.OH). These (.OH) causes the death of 
cells and lipid peroxidation in the brain. Dopamine quinones 
may stimulate protein ubiquitination and the formation of 
α-synuclein and Lewy bodies, the pathological hallmark of PD 
[45,46]. Furthermore, the presence of monoamine oxidase B 
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in the substantianigra glial cells can deaminate dopamine, 
forming an oxidizing agent H2O2 that can enter the nearby 
dopaminergic cells and also reacts with Fe2+ (iron) to form 
hydroxyl radical resulting in extra oxidative damage [47]. 

The other sources of ROS in the brain include low levels of 
antioxidants, particularly GSH (glutathione) as the amount 
of this antioxidant is found to be negatively correlated with 
aging and PD is an age-related neurodegenerative disorder. 
This antioxidant reduction is one of the earliest biochemical 
changes seen in PD. GSH depletion may have a significant 
effect on the resilience of dopamine neurons, particularly 
if they are experiencing OS [48]. Obesity is another source 
for generating OS apart from its direct association with IR 
and hyperglycemia [12].Vitamin and mineral deficiencies 
can also play a role in the formation of a compromised 
antioxidant defence in the pathogenesis of obesity [49,50] 
and as obesity is the driving force behind IR [18], raises the 
FFA level and hinders adenine nucleotide translocation in 

the ETC of mitochondria by the production of superoxide ion 
(O2•−) [51] a member of the ROS family that leads to damage 
and death of a cell. PD patients and mitochondrial toxin 
examples of the disease both exhibit persistent inhibition 
of mitochondrial Complex I activity [52]. Again FFA from 
excessive adipocytes increases ROS production by increasing 
the NADPH oxidase-a powerful oxidizing enzyme and also 
by stimulating special cytokines called adipokines and other 
pro-inflammatory cytokines like TNFα, IL6, IL1β, and MCP-1 
causing mitochondrial dysfunction and enhancing ROS. These 
cytokines and oxidizing molecules in turn are responsible 
for IR which further aids in adding the oxidative burden 
[25]. The pro-inflammatory cytokines can also cross BBB 
and further aggravate the degeneration of the neurons [37] 
and at the same time damage the mitochondria and hasten 
neurodegeneration while also increasing ROS production 
[53]. Therefore, OS is one of the main actor processes in the 
formation and advancement of PD (Figure 3).

Figure 3: Oxidative stress and Parkinson’s Disease.

Inflammation and Parkinson Disease
Inflammation in the CNS is a prominent and common feature 
in PD where nigral dopaminergic neurons are damaged 
along with the accumulation of α-synuclein. Additionally, 
neuroinflammation which is commonly recognized 
as a key role in the neurodegenerative process, is the 
aggregate name for the inflammatory responses triggered 
by soluble substances produced by damaged neurons in 
neurodegenerative disorders such as PD [9].

There are various processes through which inflammation is 
triggered in Parkinson’s disease, such as IR, gut dysbiosis, 
aging, genetics, epigenetics, and mitochondrial dysfunction 
that may ultimately lead to the production of various 
cytokines by activating the T cells. Excessive/dysregulated 
activation of the immune cells leads to the overproduction 

of proinflammatory cytokines such as IL1β, IL6, TNF-α, 
interferon-γ (INF-γ), etc ultimately paving the path for 
cytokine storm. This increased level of peripheral cytokines 
acts on the endothelial cells of BBB causing an increase in 
vascular permeability and leading to the breakdown of 
BBB. The breakdown of BBB occurs during acute or chronic 
inflammation [54]. Thus CNS is no longer regarded as an 
immunologically privileged location. These inflammatory 
CNS endothelial cells boost the production of certain 
adhesion molecules, which draw in circulating T cells, and 
monocytes, and recruit more immune cells and antibodies 
over the barrier [55].

Microglial Activation and its Role in Parkinson’s Disease: 
Microglia has both neuroprotective as well as neurotoxic 
effects in the brain. In healthy brain, resting microglia 
helps to maintain homeostasis and surveillance against 
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potential threats. It also produces nerve growth factors 
(NGF) & adenosine monophosphate (AMP); basic fibroblast 
growth factor (bFGF). There are lots of substances such 
as infectious agents, foreign pathogens, prions, or other 
pathologically-modified CNS proteins, aggregates, apoptotic 
cells, interferon (IFN)-γ, β-amyloid, lipopolysaccharide, and 
α-synuclein acting as an activating factor for microglia [56]. 
Activation of microglia is a key event in neuroinflammation. 
Significant microglial activation has been observed in post-
mortem PD brains, which is demonstrated by aberrant 
overexpression of the major histocompatibility complex–II 
(MHC-II) cell surface receptor human leukocyte antigen-DR 
(HLA-DR) in the brain and afflicted areas (mainly in SNpc). 
To be recognized by CD4+ T lymphocytes, these various 
HLA molecules are produced by DA neurons and display 
the digested antigenic peptides on their surface. Although 
neurons typically lack major histocompatibility complex 
(MHC) expression, after IFN activation, substantianigra and 
locus coeruleus neurons have been discovered to express 
MHC [57]. Activated microglia secrete a wide range of 
inflammatory mediators such as TNFα, IL-6, nitric oxide 
synthase2 (NOS2), Cyclooxygenase-2 (COX2), and ROS. These 
molecules mediate the efficient presentation of neoantigens 
to CD4+ T cells via the MHC-II pathway, leading to cell 
proliferation, subsequent slow degeneration, and finally 
the death of DA neurons [58]. MHC-II expressing microglia 
and CD4+, CD8+ T cells were documented in the SNpc of rat 
models of PD [59]. Therefore, chronic microglia activation in 

PD could exacerbate the condition by producing an excessive 
amount of these pro-inflammatory and cytotoxic factors [60].

Insight of Mechanism

Activated microglia adopts an M1 inflammatory phenotype, 
secreting proinflammatory cytokines, ROS, and glutamate; 
inducing neuronal damage. Astrocytes also become 
reactive in this process, and like microglia, they secrete 
proinflammatory cytokines. Many of these cytokines act on 
microglial cells, exacerbating their activation, and favouring 
neuronal damage. The release of TNF-α by microglia 
induces glutamate release by astrocytes causing the death 
of neurons as well as degenerating and/or dead neurons 
which in turn trigger microglial activation by secreting 
pathogen-associated molecular patterns (PAMPs) and or 
damage-associated molecular patterns (DAMPs). Protein 
accumulation (e.g., α-synuclein) is another triggering 
factor for microglial activation. Microglia degrades and 
presents components of dead cells and protein aggregates to 
CD4+ T lymphocytes. This, in conjunction with the release 
of cytokines, results in the infiltration of CD4+ T cells, 
which release more proinflammatory cytokines, leading 
to greater neurodegeneration. As a consequence of this 
neuroinflammation, BBB becomes dysfunctional, leading to 
the entry of peripheral immune cells. In the periphery, gut 
microbiota can trigger inflammation mediated by innate 
immune cells [61] Figure 4.

Figure 4: Inflammation and Parkinson’s disease.

Role of Vitamin D Deficiency in Oxidative Stress, 
Inflammation, Insulin Resistance and Parkinson’s 
Disease
Low Vitamin D is associated with poor health conditions. VDD 
seems to be frequent and related to pathogenesis of numerous 
diseases, including metabolic diseases like diabetes [62] and 

neurodegerative diseases like PD [19]. Vitamin D influences 
the nervous system and the pathophysiology of most of 
the neurodegenerative diseases [19]. This seco-steroid is 
known to have neuroprotective role. Vitamin D stimulates 
neurotropin production and the synthesis of Ca2+-binding 
proteins such as parvalbumin, inhibits the synthesis of iNOS, 
macrophage colony-stimulating factor and tumor necrosis 
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factor α (TNF-α). Furthermore, a lower concentration of 
vitamin D is correlated with high levels of inflammatory 
marker, CRP [63]. Inflammatory markers are found to be 
elevated in PD patients compared to control [64]. Overall the 
role of vitamin D appears fundamental in the prevention of 
brain aging, considering also its function in the production of 
growth factors, including nerve growth factor (NGF), ciliary 
neurotrophic factor (CNTF), glial cell-derived neurotrophic 
factor (GDNF), glial cell-line-derived neurotrophic factor 
(GDNF), brain-derived neurotrophic factor (BDNF), and 
neurotrophin 3 (NT3) [65,66]. The relationship between 
abnormal insulin signalling in the central nervous system 
and neurodegeneration has gained attention as insulin exerts 
its role on neuronal plasticity, survival, oxidative stress and 
neuroinflammation. Both PD and diabetes mellitus are aging-
associative diseases where the latter and insulin resistance 
not only increases the chances of developing PD but also 
influences the progression and prognosis of the disease [11].

The association of VDD and insulin resistance is also a 
ventured proposition [67]. Vitamin D supplementation 
have been seen clinically to reduce the level of metabolic 
parameters such as total cholesterol , low-density lipoprotein 
, triglyceride , glycated hemoglobin (HbA1c), as well as 
decreases insulin resistance indicator-homeostasis model 
assessment-estimated insulin resistance (HOMA-IR) in T2DM 
patients [68,69]. Vitamin D receptor (VDR), responsible for 
internalisation of Vitamin D and vitamin D-metabolizing 
enzymes were detected in various cell types like pancreatic 
β-cells and insulin-responsive cells such as adipocytes. 
Adipose tissue is a major site of vitamin D storage and an 
important source of adipokines and cytokines participating 
in the formation of systemic inflammation [20]. It is well 
known that obesity, especially visceral fat, is one of the major 
risk factors for T2DM. It has been also suggested that the 
potential link between diabetes and obesity is if vitamin D 
deficiency coexist with obesity [70]. Evidence suggests that 
vitamin D seems to be a regulator of numerous sequential 
events that are responsible for enabling the pancreatic 
β-cells to secrete insulin, and thereby to control of blood 
glucose level. Extra skeletal activities of Vitamin D include 
anti-inflammation along with prevention of cardiovascular 
risk and cancer development. Preclinical studies have shown 
that vitamin D seems to be a potential regulator of insulin 
secretion, calcium level, and survival of the pancreatic β-cells. 
Several studies have demonstrated that VDD contributes 
to impairment of glucose-mediated secretion of insulin 
in rat pancreatic β-cells [71,72]. It was also reported that 
glucose-mediated secretion of insulin seems to be restored 
via vitamin D supplementation [71,73]. The results of some 
clinical studies [74,75], but not all [76,77], have shown 
that vitamin D supplementation was associated with the 
improvement of insulin secretion.

Vitamin D was found to exert an effect on hepatic lipogenesis 
and gluconeogenesis. This action may be mediated via various 
vitamin D-regulated pathways including AMP-activated 
protein kinase (AMPK)-calmodulin and Akt/Notch signaling. 
AMPK is an enzyme regulating metabolism that is activated 
by phosphorylation through either the calcium/calmodulin 
protein kinase beta (CaMKKβ) or serine/threonine kinase 11 
pathways [78].

VDD and obesity often share a cause-effect relationship. It is 
documented that obese children and adolescents are more 
prone to VDD [79]. VDD is often related to visceral adiposity 
which makes it a probable biomarker for visceral adiposity-
related dysmetabolic state [62]. Volumetric dilution of VD 
is the most probable mechanism of the inverse relationship 
between vitamin D serum levels and BMI. Even though 
obese and lean subjects have similar amounts of VD, in 
overweight people, VD is distributed into a larger volume, 
making serum concentrations lower. Interestingly, 25(OH)
D is distributed dominantly into the serum, muscle, fat, and 
liver-areas which are affected by obesity and increase due to 
fat deposition [80]. A common feature in obesity is a steatotic 
liver which results in decreased capacity for hydroxylation 
of prohormones into 25-hydroxy vitamin D [62]. Thus, it is 
unclear that VDD induces obesity or obesity causes reduced 
activation of vitamin D into its active bioavailable calcitriol 
form. However, it is reported that increasing physical activity 
had positive effect on the prevention and treatment of PD 
[81]. Figure 5 represents the relation of vitamin D deficiency 
and other associated factors leading to PD. 

Figure 5: Vitamin D deficiency in Oxidative Stress, 
Inflammation, Insulin Resistance, Obesity, Hyperlipidemia, 
Metabolic syndrome and Parkinson’s disease.

Conclusion

Along with many deaths and diseases, the COVID-19 
pandemic has had a major negative impact on the social and 
economic conditions of the global population. The stress of 
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this pandemic also had a detrimental effect on the mental 
health of patients, caregivers, as well as healthy people. 
Home confinement and digitalisation restricted the outdoor 
activities that lead to inclination of basic health towards VDD 
and IR followed by OS, and inflammation. Other than genetic 
causes; VDD, IR followed by T2DM, OS and inflammation 
are the four pillars regulating the mechanisms underlying 
the onset and worsening of neurodegenerative diseases 
like PD. IGF1 have a strong connection with IR, and VDD 
has been linked to all of the key causes (OS, inflammation, 
IR, and adiposity) that lead to PD. However, polymorphic 
genetic profile of some individuals related to antioxidant 
enzyme systems, regulating blood sugar, maintaining active 
metabolite of Vitamin D, balancing anti/pro inflammatory 
cytokines has led them to more susceptible to develop a 
neurodegeneration and hence it need to be address far earlier 
before the disease onset. As the onset of PD like diseases take 
place years ago before a diagnosis is actually made and does 
not currently have a cure, lifestyle management is essential 
to prevent them. Stress is an unavoidable phenomenon 
in modern day life, so combating it with proper way in 
individualistic approach and addressing the modifiable 
factors like VDD, IR-T2DM, OS should be taken into account 
for leading a healthy life in older age.
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