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Abstract 

Salt stress induces osmotic stress, ionic toxicity and most drastically causes oxidative damage. High salt stress levels 
cause oxidative damage, associated with the production of different reactive oxygen species (ROS). Conventionally ROS 
were considered as bad guys and plants exhibited high antioxidants activities, can tolerate oxidative stress. Nonetheless 
recent evidences showed that ROS also act as signaling molecules which plays very crucial role in plant stress adaptation. 
This has prompted to reconsider conventional role of ROS as oxidative species and to further examine role of ROS as 
oxidative signaling in breeding programs to enhance salt stress tolerance in plants. Moreover, along with considering 
diversity of antioxidants, ROS production and ROS scavenging both at inter and intra-cellular level should be considered. 
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Abbreviations: ROS: Reactive Oxygen Species 
 

Perspective 

Salt stress is amongst most drastic a biotic stresses that 
can significantly reduce crop yields [1,2]. Salt stress 
causes osmotic stress and specific ion toxicity however in 
recent years oxidative damage has been added to this list 
[3,4]. Under salt stress, reduction of O2 occurred and 
converted into H2O, and reactive oxygen species (ROS) 
(such as superoxide radical (O2

-), hydrogen peroxide 
(H2O2), and hydroxyl radical (OH-) [5]. These ROS at first 
instance acts as signaling molecules and trigger plant 
defense mechanism in plants to cope with salt stress 
however due to inability of plants to maintain a balance 
between over production of ROS, these ROS cause 

oxidative damage to plants and disrupt numerous plant 
processes [6]. ROS are highly toxic and due to their highly 
cytotoxic and reactive nature, their accumulation in plant 
tissues and intracellular compartments must be tightly 
controlled. In response to ROS, plants possess very 
effective ROS scavenging mechanism, termed as 
antioxidant defense system which scavenges ROS and 
protects plant cells from salt stress induced oxidation 
process [7]. From last two decades, articles focusing on 
conventional concept of antioxidant defense system, 
higher antioxidant activity better the plant to cope ROS 
have been increased exponentially. Increase in 
antioxidant activity with increase in salt concentration 
has been considered as salt stress tolerance mechanism in 
plants (especially in halophytes) [8,9], nonetheless, many 
other reports question the validity of this approach, 
reporting no or a negative correlation between activity of 
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antioxidant enzymes and plant salinity stress tolerance (Table 1). 
 

Antioxidants response Plant species Antioxidant response Reference 

SOD 

Rice Increase Lee et al. 2001 [10] 

Brassica napus Increase Ashraf and Ali 2008 [11] 

Wheat Increase Sairam et al. 2005 [12] 

Rice Decrease Khan and Panda 2008 [13] 

Maize Decrease De Azevedo Neto et al. 2006 [14] 

Foxtail millet Decrease Sreenivasulu et al. 2000 [15] 

CAT 

Chickpea Increase Eyidogan and Oz 2005; [16] 

Rice Increase Khan and Panda 2008 [13] 

Pea Increase Hernandez et al. 2000 [8] 

Rice Decrease Khan and Panda 2008 [13] 

Pea Decrease Noreen and Ashraf 2009 [17] 

APX 

Rice Increase Khan and Panda 2008 [13] 

Wheat Increase Mandhania et al. 2006 [18] 

Alfalfa Increase Wang et al. 2009 [19] 

Maize Decrease de Azevedo Neto et al. 2006 [14] 

Foxtail millet Decrease Sreenivasulu et al. 2000 [15] 

Pea No change Hernandez et al. 2002 [8] 

Rice No change Demiral and Türkan 2005 [20] 

GPX 

Rice Increase Vaidyanathan et al. 2003 [21] 

Tobacco Increase Roxas et al. 2000 [22] 

Tomato Increase Wang et al. 2005 [19] 

Pea No change Hernández et al. 2002 [18] 

Proline 

Wheat Increase Sairam et al. 2002 [12] 

Sugar beet Increase Ghoulam et al. 2002 [23] 

Sesame Increase Koca et al. 2007 [24] 

Cassia angustifolia Decrease Agarwal and Pandey 2004 [25] 

Rice Decrease Lutts et al. 1996 [26] 

Tocopherol 

Cotton Increase Gossett et al. 1994 [27] 

Pea Increase Noreen and Ashraf 2009 [17] 

Pea Decrease Noreen and Ashraf 2009 [17] 

Rice Decrease Turan and Tripathy 2013 [28] 

Table 1: Selected examples of different response of antioxidants activity in different plant species. 
 
Nonetheless in recent years new concept of oxidative 
signaling rather that oxidative stress has been suggested 
(Foyer and Noctor 2005). Plants utilize ROS as effective 
and most likely first signaling molecules to trigger or 
control different physiological mechanisms (e.g.) stomatal 
density and size [29], cell division and expansion 
(Foreman et al. 2003), hormones production [30], floral 
development [31]. In many cases, production of ROS is 
genetically programmed, and superoxide and H2O2 are 
used as second messengers (Foyer and Noctor 2005). 
Demidchik et al. [32] further supported these arguments 
by showing that free oxygen radical can regulate K+ and 

Ca2+ permeable channels in plant root cells, thus plays 
important signaling compounds under salt stress. This has 
provoked to reconsider conventional concept of oxidative 
damage and redox regulation and introduce new concept 
of oxidative signaling in breeding programs to enhance 
salt stress tolerance in plants. Evidences have been 
increased significantly showing differential response of 
antioxidant production under salt stress in various plant 
parts at various time points (Box 1). Therefore, along with 
considering diversity of antioxidants, ROS production and 
ROS scavenging both at inter and intra-cellular level 
should be considered. 
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Box 1 
 
Antioxidant response at different time points of salt stress  
Antioxidant production and their ROS scavenging activity also displays a pronounced time dependency on salt stress 
duration and therefore might be different at different time points. In Medicago truncatula roots, activities of POD, SOD, 
and CAT were increased only upto 24 hours after salt stress imposition however these activities were lost after 48 
hours of salt stress [33]. Similarly, Hernández et al. [8] showed that glutathione reductase activity was increased only 
after 24 of salt stress while SOD production was continuously increased up to 48 hours of salt stress. In tomato, ROS 
scavenging by SOD, CAT, MDHAR and APX was noticed up to 16 days after salt stress however GR activity was 
continuously decreased from the beginning of salt stress impositions [34]. All these studies showed differential 
response of antioxidant at different time points, suggested that variation might be due to plant species, experimental 
condition and data collection.  
 
Different antioxidant response in different plant tissue and organelles 
ROS scavenging by antioxidants are tissue specific, for instance in maize polyphenol contents and total antioxidant 
activity were enhanced with subsequent increase in salt stress levels in mature leaves and roots however no change 
was noticed in young leaves. Moreover proline contents were higher in young leaves only and no change was noticed 
in roots or older leaves (Hamada et al. 2016). Some other studies also reported tissue specific response of 
antioxidants in different plant species. In tomato leaves, ascorbic acid and tocopherol contents were increased with 
increase in salt stress level [35] however they declined in rice leaves under salt stress [28]. According to Bandeoğlu et 
al. [36], higher activity of SOD, GR and APX was observed in roots while little activity was noted in shoot. Similarly in 
Phaseolus vulgaris higher activity of APX and SOD was observed in roots while no activity was noted in nodules under 
salt stress [37]. These contrasting findings could be owing to plant species or tissue specificity. Furthermore plant age 
related variation in antioxidants production and their reponses could also explain the reason behind the inter-specific 
or intra-specific aspects of ROS production and antioxidant activity. Kraxchik and Bernstein [38] supported these 
arguments by showing that young leaves of maize are less sensitive to salt stress as compared with mature leaves. 
These studies indicated possible role of ROS in the systemic signaling from roots to leaves and activation of 
antioxidant for better protection against oxidative stress and/or salt stress. Along with tissue specific antioxidant 
response, organelles specific antioxidant activities have also been reported. For example Hernandez et al. [8] 
documented high activity of SOD activity in pea apoplast while higher activity of GR, MDHAR and DHAR in symplast. 
Similarly, Mittova et al. [39] reported that mitochondria and peroxisomes of the salt treated roots of wild tomato had 
increased levels of lipid peroxidation and H2O2 coupled with decreased activities of SOD, POD, ASC and GSH, 
suggesting that improving endogenous production of antioxidant at mitochondria and/or peroxisome could improve 
salt stress tolerance. In another study, higher activity of SOD, APX and GR was noted in chloroplastic fraction as 
compared with mitocondiral fraction and cytosolic fraction [40]. 

 
Some other arguments also highlighted that salt stress 
tolerant plant do not allow ROS production in first 
instance and thus require no antioxidant activity [6]. 
Plants can use these ROS and do some other jobs such as 
amelioration of ion toxicity. This can be done by either 
excluding excessive sodium from cytosol into apoplast or 
vacuole [40,41]. Halophytes use such strategy to cope 
with high salt stress levels. Halophytes also exhibited 
higher antioxidant production and converts excessive free 
oxygen radical into H2O2 at initial stages of salt stress and 
after that use H2O2 as signaling molecule to trigger other 
physiological and genetic processes [42]. However it is 
still unknown, when halophytes decide that salt stress 
induced H2O2 should be used as signaling compound in 
plant adaptive mechanism and redox regulation [43]. 
Moreover, owing to similar signaling signatures between 
H2O2 and Ca2+, the role of other enzymatic antioxidants 
may be attributed to the need to decrease the basal levels 

of H2O2, once the signaling has been processed. In this 
context, role of CAT and APX in the shaping of H2O2 
signature may be similar to those that Ca2+ efflux systems 
[44]. 
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